For what type of charge distribution, electric field can be obtained by using Coulomb’s law and superposition principle ?
Write equation of electric field by point charge. How does it depend on distance ?
Five point charge each having magnitude $‘q’$ are placed at the corner of hexagon as shown in fig. Net electric field at the centre $‘O’$ is $\vec E$. To get net electric field at $‘O’$ be $6\vec E$, charge placed on the remaining sixth corner should be
A circular ring carries a uniformly distributed positive charge. The electric field $(E) $ and potential $ (V) $ varies with distance $(r)$ from the centre of the ring along its axis as
Two point charges $( + Q)$ and $( - 2Q)$ are fixed on the $X-$axis at positions $a$ and $2a$ from origin respectively. At what positions on the axis, the resultant electric field is zero
A wire of length $L\, (=20\, cm)$, is bent into a semicircular arc. If the two equal halves of the arc were each to be uniformly charged with charges $ \pm Q\,,\,\left[ {\left| Q \right| = {{10}^3}{\varepsilon _0}} \right]$ Coulomb where $\varepsilon _0$ is the permittivity (in $SI\, units$) of free space] the net electric field at the centre $O$ of the semicircular arc would be