For what type of charge distribution, electric field can be obtained by using Coulomb’s law and superposition principle ?
Two beads, each with charge $q$ and mass $m$, are on a horizontal, frictionless, non-conducting, circular hoop of radius $R$. One of the beads is glued to the hoop at some point, while the other one performs small oscillations about its equilibrium position along the hoop. The square of the angular frequency of the small oscillations is given by [ $\varepsilon_0$ is the permittivity of free space.]
The given diagram shows two semi infinite line of charges having equal (in magnitude) linear charge density but with opposite sign. The electric field at any point on $x$ axis for $(x > 0)$ is along the unit vector
Is electric field scalar or vector ? Why ?
A charge produces an electric field of $1\, N/C$ at a point distant $0.1\, m$ from it. The magnitude of charge is
An oil drop of radius $2\, mm$ with a density $3\, g$ $cm ^{-3}$ is held stationary under a constant electric field $3.55 \times 10^{5}\, V\, m ^{-1}$ in the Millikan's oil drop experiment. What is the number of excess electrons that the oil drop will possess ? (consider $\left. g =9.81\, m / s ^{2}\right)$