Gujarati
1. Electric Charges and Fields
medium

Two beads, each with charge $q$ and mass $m$, are on a horizontal, frictionless, non-conducting, circular hoop of radius $R$. One of the beads is glued to the hoop at some point, while the other one performs small oscillations about its equilibrium position along the hoop. The square of the angular frequency of the small oscillations is given by [ $\varepsilon_0$ is the permittivity of free space.]

A

$q^2 /\left(4 \pi \varepsilon_0 R^3 m\right)$

B

$q^2 /\left(32 \pi \varepsilon_0 R^3 m\right)$

C

$q^2 /\left(8 \pi \varepsilon_0 R^3 m\right)$

D

$q^2 /\left(16 \pi \varepsilon_0 R^3 m\right)$

(IIT-2024)

Solution

$\text { Restoring force }= qE \sin \left(\frac{\theta}{2}\right)$

$\therefore \tau= qE \sin \left(\frac{\theta}{2}\right) R= I \alpha$

$E =\frac{ Kq }{\left(2 R \cos \frac{\theta}{2}\right)^2}=\frac{1}{4 \pi \varepsilon_0} \frac{ q }{4 R ^2 \cos ^2\left(\frac{\theta}{2}\right)}$

$\therefore \frac{1}{4 \pi \epsilon_0} \frac{ qR }{4 R ^2 \cos ^2\left(\frac{\theta}{2}\right)} \sin \left(\frac{\theta}{2}\right) q = mR ^2 \alpha$

For $\theta$ very small,

$\frac{-q^2}{32 \pi \varepsilon_0 R^3 m} \theta=\alpha$

$\therefore \omega^2=\frac{q^2}{32 \pi \varepsilon_0 m^3}$

Hence option $(B)$

Standard 12
Physics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.