Force $F$ applied on a body is written as $F =(\hat{ n } \cdot F ) \hat{ n }+ G$, where $\hat{ n }$ is a unit vector. The vector $G$ is equal to
$\hat{ n } \times F$
$\hat{ n } \times(\hat{ n } \times F )$
$(\hat{ n } \times F ) \times F /| F |$
$(\hat{ n } \times F ) \times \hat{ n }$
Two forces ${\vec F_1} = 5\hat i + 10\hat j - 20\hat k$ and ${\vec F_2} = 10\hat i - 5\hat j - 15\hat k$ act on a single point. The angle between ${\vec F_1}$ and ${\vec F_2}$ is nearly ....... $^o$
Define the scalar product of two vectors.
The resultant of $\vec{A} \times 0$ will be equal to
If $\overrightarrow {\rm A} = 2\hat i + 3\hat j - \hat k$ and $\overrightarrow B = - \hat i + 3\hat j + 4\hat k$ then projection of $\overrightarrow A $ on $\overrightarrow B $ will be
If a vector $\vec A$ is parallel to another vector $\vec B$ then the resultant of the vector $\vec A \times \vec B$ will be equal to