- Home
- Standard 11
- Physics
3-1.Vectors
medium
The values of $x$ and $y$ for which vectors $A =(6 \hat{ i }+x \hat{ j }-2 \hat{ k })$ and $B =(5 \hat{ i }+6 \hat{ j }-y \hat{ k })$ may be parallel are
A$x=0, y=\frac{2}{3}$
B$x=\frac{36}{5}, y=\frac{5}{3}$
C$x=-\frac{15}{3}, y=\frac{23}{5}$
D$x=-\frac{36}{5}, y=\frac{15}{4}$
Solution
(b)
For vectors to be parallel, ratio of coefficients should be same.
$\therefore \quad \frac{6}{5}=\frac{x}{6}=\frac{-2}{-y}$
For vectors to be parallel, ratio of coefficients should be same.
$\therefore \quad \frac{6}{5}=\frac{x}{6}=\frac{-2}{-y}$
Standard 11
Physics
Similar Questions
If $\left| {\vec A } \right|\, = \,2$ and $\left| {\vec B } \right|\, = \,4$ then match the relation in Column $-I$ with the angle $\theta $ between $\vec A$ and $\vec B$ in Column $-II$.
Column $-I$ | Column $-II$ |
$(a)$ $\vec A \,.\,\,\vec B \, = \,\,0$ | $(i)$ $\theta = \,{0^o}$ |
$(b)$ $\vec A \,.\,\,\vec B \, = \,\,+8$ | $(ii)$ $\theta = \,{90^o}$ |
$(c)$ $\vec A \,.\,\,\vec B \, = \,\,4$ | $(iii)$ $\theta = \,{180^o}$ |
$(d)$ $\vec A \,.\,\,\vec B \, = \,\,-8$ | $(iv)$ $\theta = \,{60^o}$ |
medium