Four identical plates $1, 2, 3$ and $4$ are placed parallel to each other at equal distance as shown in the figure. Plates $1$ and $4$ are joined together and the space between $2$ and $3$ is filled with a dielectric of dielectric constant $k$ $=$ $2$. The capacitance of the system between $1$ and $3$ $\&$ $2$ and $4$ are $C_1$ and $C_2$ respectively. The ratio $\frac{{{C_1}}}{{{C_2}}}$ is
$1.67$
$1$
$0.6$
$0.71$
The parallel combination of two air filled parallel plate capacitors of capacitance $C$ and $nC$ is connected to a battery of voltage, $V$. When the capacitor are fully charged, the battery is removed and after that a dielectric material of dielectric constant $K$ is placed between the two plates of the first capacitor. The new potential difference of the combined system is
There is an air filled $1\,pF$ parallel plate capacitor. When the plate separation is doubled and the space is filled with wax, the capacitance increases to $2\,pF$. The dielectric constant of wax is
A capacitor has some dielectric between its plates and the capacitor is connected to a $\mathrm{D.C.}$ source. The battery is now disconnected and then the dielectric is removed. State whether the capacitance, the energy stored in it, electric field, charge stored and the voltage will increase, decrease or remain constant.
The radii of the inner and outer spheres of a condenser are $9\,cm$ and $10\,cm$ respectively. If the dielectric constant of the medium between the two spheres is $6$ and charge on the inner sphere is $18 \times {10^{ - 9}}\;coulomb$, then the potential of inner sphere will be, if the outer sphere is earthed........$volts$
A parallel plate air-core capacitor is connected across a source of constant potential difference. When a dielectric plate is introduced between the two plates then :