Assertion : If the distance between parallel plates of a capacitor is halved and dielectric constant is three times, then the capacitance becomes $6\,times$.
Reason : Capacity of the capacitor does not depend upon the nature of the material.
If both Assertion and Reason are correct and the Reason is a correct explanation of the Assertion.
If both Assertion and Reason are correct but Reason is not a correct explanation of the Assertion.
If the Assertion is correct but Reason is incorrect.
If both the Assertion and Reason are incorrect.
The capacity of a parallel plate capacitor with no dielectric substance but with a separation of $0.4 \,cm$ is $2\,\mu \,F$. The separation is reduced to half and it is filled with a dielectric substance of value $2.8$. The final capacity of the capacitor is.......$\mu \,F$
A parallel plate capacitor with plate area $'A'$ and distance of separation $'d'$ is filled with a dielectric. What is the capacity of the capacitor when permittivity of the dielectric varies as :
$\varepsilon(x)=\varepsilon_{0}+k x, \text { for }\left(0\,<\,x \leq \frac{d}{2}\right)$
$\varepsilon(x)=\varepsilon_{0}+k(d-x)$, for $\left(\frac{d}{2} \leq x \leq d\right)$
Between the plates of a parallel plate condenser, a plate of thickness ${t_1}$ and dielectric constant ${k_1}$ is placed. In the rest of the space, there is another plate of thickness ${t_2}$ and dielectric constant ${k_2}$. The potential difference across the condenser will be
An uncharged parallel plate capacitor having a dielectric of constant $K$ is connected to a similar air-cored parallel capacitor charged to a potential $V$. The two share the charge and the common potential is $V'$. The dielectric constant $K$ is
A parallel plate capacitor is to be designed, using a dielectric of dielectric constant $5$, so as to have a dielectric strength of $10^9\;Vm^{-1}$ . If the voltage rating of the capacitor is $12\;kV$, the minimum area of each plate required to have a capacitance of $80\;pF$ is