Gujarati
Hindi
1. Electric Charges and Fields
hard

Four point charges, each of $+ q$, are rigidly fixed at the four corners of a square planar soap film of side ' $a$ ' The surface tension of the soap film is $\gamma$. The system of charges and planar film are in equilibrium, and $a=k\left[\frac{q^2}{\gamma}\right]^{1 / N}$, where ' $k$ ' is a constant. Then $N$ is

A

$3$

B

$6$

C

$4$

D

$5$

(IIT-2011)

Solution

$F_1=$ Net electrostatic force on any one charge due to rest of three charges

$=\frac{1}{4 \pi \varepsilon_0} \frac{q^2}{a^2}\left(\sqrt{2}+\frac{1}{2}\right), F_2=$ surface this equation we get $a =2$.

If we see the equilibrium of line $B C$, then .

$2 F_1 \cos 45^{\circ}=F_2 \text { or } \sqrt{2} F_1=F_2 \text { or } \frac{1}{4 \pi \varepsilon_0} \frac{q^2}{a^2}(2 +\frac{1}{\sqrt{2}}=\gamma a$

$\therefore a^3=\frac{1}{4 \pi \varepsilon_0}\left(2+\frac{1}{\sqrt{2}} \frac{q^2}{\gamma} \text { or } a\right.$

$=\left\{\frac{1}{4 \pi \varepsilon_0}\left(2+\frac{1}{\sqrt{2}}\right\}^{1 / 3}\left[\frac{q^2}{\gamma}\right)\right]^{2 / k}=k\left[\frac{q^2}{\gamma}\right]^{1 / 3}$

Where $k=\left\{\frac{1}{4 \pi \varepsilon_0}\left(2+\frac{1}{2}\right)\right\}^{1 / 3}$ therefore $N =3$

Standard 12
Physics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.