Four point charges, each of $+ q$, are rigidly fixed at the four corners of a square planar soap film of side ' $a$ ' The surface tension of the soap film is $\gamma$. The system of charges and planar film are in equilibrium, and $a=k\left[\frac{q^2}{\gamma}\right]^{1 / N}$, where ' $k$ ' is a constant. Then $N$ is
$3$
$6$
$4$
$5$
Two identical charged spheres suspended from a common point by two massless strings of lengths $l,$ are initially at a distance $d\;(d < < l)$ apart because of their mutual repulsion. The charges begin to leak from both the spheres at a constant rate. As a result, the spheres approach each other with a velocity $v.$ Then $v$ varies as a function of the distance $x$ between the spheres, as
Two point charges placed at a certain distance $r$ in air exert a force $F$ on each other. Then the distance $r'$ at which these charges will exert the same force in a medium of dielectric constant $k$ is given by
An electric field due to a positively charged long straight wire at a distance $r$ from it is proportional to $r^{-1}$ in magnitude. Two electrons are orbiting such a long straight wire in circular orbits of radii $1 A$ and $2 A$. The ratio of their respective time periods is
The distance between charges $5 \times {10^{ - 11}}\,C$ and $ - 2.7 \times {10^{ - 11}}\,C$ is $0.2\, m$. The distance at which a third charge should be placed in order that it will not experience any force along the line joining the two charges is......$m$
The electrostatic force on a small sphere of charge $0.4 \;\mu\, C$ due to another small sphere of charge $-0.8 \;\mu \,C$ in air is $0.2\; N .$
$(a)$ What is the distance between the two spheres?
$(b)$ What is the force on the second sphere due to the first?