1. Electric Charges and Fields
medium

The electrostatic force on a small sphere of charge $0.4 \;\mu\, C$ due to another small sphere of charge $-0.8 \;\mu \,C$ in air is $0.2\; N .$

$(a)$ What is the distance between the two spheres?

$(b)$ What is the force on the second sphere due to the first?

Option A
Option B
Option C
Option D

Solution

$(a)$ Electrostatic force on the first sphere, $F =0.2\, N$ Charge on this sphere, $q_{1}=0.4 \,\mu \,C =0.4 \times 10^{-6}\; C$

Charge on the second sphere, $q_{2}=-0.8 \,\mu \,C =-0.8 \times 10^{-6} \,C$

Electrostatic force between the spheres is given by the relation $F=\frac{1}{4 \pi \varepsilon_{0}} \cdot \frac{q_{1} q_{2}}{r^{2}}$

Where, $\varepsilon_{0}=$ Permittivity of free space and $\frac{1}{4 \pi \varepsilon_{0}}=9 \times 10^{9} \,Nm ^{2}\, C ^{-2}$

Therefore, $r^{2}=\frac{1}{4 \pi \varepsilon_{0}} \cdot \frac{q_{1} q_{2}}{F}$

$=\frac{0.4 \times 10^{-6} \times 8 \times 10^{-6} \times 9 \times 10^{9}}{0.2}=144 \times 10^{-4}$

$\Rightarrow r=\sqrt{144 \times 10^{-4}}=12 \times 10^{-2}=0.12\, m$

The distance between the two spheres is $0.12 \,m$

$(b)$ Both the spheres attract each other with the same force. Therefore, the force on the second sphere due to the first is $0.2\, N$.

Standard 12
Physics

Similar Questions

There is another useful system of units, besides the $\mathrm{SI/MKS}$. A system, called the $\mathrm{CGS}$ (centimeter-gramsecond) system. In this system Coloumb’s law is given by $\vec F = \frac{{Qq}}{{{r^2}}} \cdot \hat r$ where the distance $r$ is measured in $cm\left( { = {{10}^{ – 2}}m} \right)$ , $\mathrm{F}$ in dynes $\left( { = {{10}^{ – 5}}N} \right)$  and the charges in electrostatic units $(\mathrm{es\,unit}$), where $1$ $\mathrm{esu}$ of charge $ = \frac{1}{{[3]}} \times {10^{ – 9}}C$. The number ${[3]}$ actually arises from the speed of light in vacuum which is now taken to be exactly given by $c = 2.99792458 \times {10^8}m/s$. An approximate value of $c$ then is $c = 3 \times {10^8}m/s$.

$(i)$ Show that the coloumb law in $\mathrm{CGS}$ units yields $1$ $\mathrm{esu}$ of charge = $= 1\,(dyne)$ ${1/2}\,cm$. Obtain the dimensions of units of charge in terms of mass $\mathrm{M}$, length $\mathrm{L}$ and time $\mathrm{T}$. Show that it is given in terms of fractional powers of $\mathrm{M}$ and $\mathrm{L}$ .

$(ii)$ Write $1$ $\mathrm{esu}$ of charge $=xC$, where $x$ is a dimensionless number. Show that this gives $\frac{1}{{4\pi { \in _0}}} = \frac{{{{10}^{ – 9}}}}{{{x^2}}}\frac{{N{m^2}}}{{{C^2}}}$ with $x = \frac{1}{{[3]}} \times {10^{ – 9}}$ we have, $\frac{1}{{4\pi { \in _0}}} = {[3]^2} \times {10^9}\frac{{N{m^2}}}{{{C^2}}}$ or $\frac{1}{{4\pi { \in _0}}} = {\left( {2.99792458} \right)^2} \times {10^9}\frac{{N{m^2}}}{{{C^2}}}$ (exactly).

medium

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.