Four point charges $-q, +q, +q$ and $-q$ are placed on $y$ axis at $y = -2d$, $y = -d, y = +d$ and $y = +2d$, respectively. The magnitude of the electric field $E$ at a point on the $x -$ axis at $x = D$, with $D > > d$, will vary as
$E \propto \frac{1}{D}$
$E \propto \frac{1}{D^3}$
$E \propto \frac{1}{D^2}$
$E \propto \frac{1}{D^4}$
Electric field at centre $O$ of semicircle of radius $a$ having linear charge density $\lambda$ given is given by
Two point charges $q_1$ and $q_2 (=q_1/2)$ are placed at points $A(0, 1)$ and $B(1, 0)$ as shown in the figure. The electric field vector at point $P(1, 1)$ makes an angle $\theta $ with the $x-$ axis, then the angle $\theta$ is
Electric field strength due to a point charge of $5\,\mu C$ at a distance of $80\, cm$ from the charge is
Two identical non-conducting solid spheres of same mass and charge are suspended in air from a common point by two non-conducting, massless strings of same length. At equilibrium, the angle between the strings is $\alpha$. The spheres are now immersed in a dielectric liquid of density $800 kg m ^{-3}$ and dielectric constant $21$ . If the angle between the strings remains the same after the immersion, then
$(A)$ electric force between the spheres remains unchanged
$(B)$ electric force between the spheres reduces
$(C)$ mass density of the spheres is $840 kg m ^{-3}$
$(D)$ the tension in the strings holding the spheres remains unchanged
A charged particle of mass $5 \times {10^{ - 5}}\,kg$ is held stationary in space by placing it in an electric field of strength ${10^7}\,N{C^{ - 1}}$ directed vertically downwards. The charge on the particle is