ચાર બિંદુવત વિદ્યુતભારો $-q, +q, +q$ અને $-q$ $y$ અક્ષ પર $y = -2d$, $y = -d, y = +d$ અને $y = +2d$ પર છે.$x$ અક્ષ પર $x = D\,\,(D > > d)$ પાસે વિદ્યુતક્ષેત્ર કોના સમપ્રમાણમાં હશે?
$E \propto \frac{1}{D}$
$E \propto \frac{1}{D^3}$
$E \propto \frac{1}{D^2}$
$E \propto \frac{1}{D^4}$
બે વિદ્યુતભાર $9e$ અને $3e$ ને $r$ અંતરે મૂકેલા છે,તો વિદ્યુતક્ષેત્ર શૂન્ય કયા થાય?
સમાન બાજુવાળા પંચકોણના દરેક શિરોબિંદુઓ પર $\mathrm{q}$ વિધુતભારવાળા પાંચ વિધુતભારો છે.
$(a)$ $(i)$ પંચકોણના કેન્દ્ર $\mathrm{O}$ પાસે વિધુતક્ષેત્ર કેટલું ?
$(ii)$ જો એક શિરોબિંદુ $(\mathrm{A})$ પરનો વિધુતભાર દૂર કરીએ, તો હવે તેનાં કેન્દ્ર $\mathrm{O}$ પાસે વિધુતક્ષેત્ર કેટલું ?
$(iii)$ જો એક શિરોબિંદુ $\mathrm{A}$ પરના $\mathrm{q}$ વિધુતભારના બદલે $-\mathrm{q}$ વિધુતભાર મૂકીએ તો તેનાં કેન્દ્ર $\mathrm{O}$ પાસે વિધુતક્ષેત્ર કેટલું ?
$(b)$ જો પંચકોણના બદલે $\mathrm{n}$ -બાજવાળો નિયમિત બહકોણ પરના દરેક શિરોબિંદુ પર $\mathrm{q}$ વિધુતભાર મુકીએ તો $(a)$ ના જવાબ પર કેવી અસર થાય ?
એક પાતળી $R$ ત્રિજયાની સુવાહક વર્તુળાકાર રિંગ પરનો વિદ્યુતભાર $+Q$ છે. વર્તુળાકાર રિંગના $AKB$ વિભાગથી રિંગના કેન્દ્ર પર ઉદ્ભવતું વિદ્યુતક્ષેત્ર $E$ છે,તો રિંગના $ACDB $ વિભાગથી રિંગના કેન્દ્ર પર ઉદ્ભવતું વિદ્યુતક્ષેત્ર ________ હશે.
બે બિંદુગત વિદ્યુતભારો $e$ અને $3 e$ ને $r$ અંતરે મૂકવામાં આવ્યા છે. વિદ્યુતભારથી કેટલા અંતરે વિદ્યુતક્ષેત્ર તીવ્રતા શૂન્ય હશે ?
$R$ ત્રિજ્યા વાળી એક સમાન રીતે વિદ્યુતભારિત થયેલી રિંગની અક્ષ પર લાગતું વિદ્યુતક્ષેત્રનું મહત્તમ મૂલ્ય તેના કેન્દ્રથી $h$ અંતર આગળ છે. $h$ નું મૂલ્ય હશે.