From a class of $25$ students, $10$ are to be chosen for an excursion party. There are $3$ students who decide that either all of them will join or none of them will join. In how many ways can the excursion party be chosen?
From the class of $25$ students, $10$ are to be chosen for an excursion party.
since there are $3$ students who decide that either all of them will join or none fo them will join, there are two cases.
Case $I:$ All the three students join.
Then, the remaining $7$ students can be chosen from the remaining $22$ students in $^{22} C_{7}$ ways.
Case $II:$ None of the three students join.
Then, $10$ students can be chosen from the remaining $22$ students in $^{22} C_{10}$ ways.
Thus, required number of ways of choosing the excursion party is $^{22} C_{7}+^{22} C_{10}.$
If $^{15}{C_{3r}}{ = ^{15}}{C_{r + 3}}$, then the value of $r$ is
$\sum\limits_{r = 0}^m {^{n + r}{C_n} = } $
How many words can be formed by taking $3$ consonants and $2$ vowels out of $5$ consonants and $4$ vowels
If ${ }^{1} \mathrm{P}_{1}+2 \cdot{ }^{2} \mathrm{P}_{2}+3 \cdot{ }^{3} \mathrm{P}_{3}+\ldots+15 \cdot{ }^{15} \mathrm{P}_{15}={ }^{\mathrm{q}} \mathrm{P}_{\mathrm{r}}-\mathrm{s}, 0 \leq \mathrm{s} \leq 1$ then ${ }^{\mathrm{q}+\mathrm{s}} \mathrm{C}_{\mathrm{r}-\mathrm{s}}$ is equal to .... .
If $^{{n^2} - n}{C_2}{ = ^{{n^2} - n}}{C_{10}}$, then $n = $