13.Statistics
hard

From a lot of $12$ items containing $3$ defectives, a sample of $5$ items is drawn at random. Let the random variable $\mathrm{X}$ denote the number of defective items in the sample. Let items in the sample be drawn one by one without replacement. If variance of $X$ is $\frac{m}{n}$, where $\operatorname{gcd}(m, n)=1$, then $n-m$ is equal to..........

A

$71$

B

$34$

C

$72$

D

$76$

(JEE MAIN-2024)

Solution

$ \mathrm{a}=1-\frac{{ }^3 \mathrm{C}_5}{{ }^{12} \mathrm{C}_5} $

$ \mathrm{~b}=3 \cdot \frac{{ }^9 \mathrm{C}_4}{{ }^{12} \mathrm{C}_5} $

$ \mathrm{c}=3 \cdot \frac{{ }^9 \mathrm{C}_3}{{ }^{12} \mathrm{C}_5} $

$ \mathrm{~d}=1 \cdot \frac{{ }^9 \mathrm{C}_2}{{ }^{12} \mathrm{C}_5} $

$ \mathrm{u}=0 \cdot \mathrm{a}+1 \cdot \mathrm{b}+2 \cdot \mathrm{c}+3 \cdot \mathrm{d}=1.25 $

$ \sigma^2=0 \cdot \mathrm{a}+1 \cdot b+4 \cdot c+9 \mathrm{~d}-\mathrm{u}^2 $

$ \sigma^2=\frac{105}{176}$

Ans. $176-105=71$

Standard 11
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.