From a lot of $12$ items containing $3$ defectives, a sample of $5$ items is drawn at random. Let the random variable $\mathrm{X}$ denote the number of defective items in the sample. Let items in the sample be drawn one by one without replacement. If variance of $X$ is $\frac{m}{n}$, where $\operatorname{gcd}(m, n)=1$, then $n-m$ is equal to..........
$71$
$34$
$72$
$76$
If the mean and variance of the frequency distribution
$x_i$ | $2$ | $4$ | $6$ | $8$ | $10$ | $12$ | $14$ | $16$ |
$f_i$ | $4$ | $4$ | $\alpha$ | $15$ | $8$ | $\beta$ | $4$ | $5$ |
are $9$ and $15.08$ respectively, then the value of $\alpha^2+\beta^2-\alpha \beta$ is $............$.
The mean and variance of $7$ observations are $8$ and $16,$ respectively. If five observations are $2, 4, 10,12,14,$ then the absolute difference of the remaining two observations is
Find the mean and variance for the first $10$ multiples of $3$
The mean and the standard deviation (s.d.) of $10$ observations are $20$ and $2$ resepectively. Each of these $10$ observations is multiplied by $\mathrm{p}$ and then reduced by $\mathrm{q}$, where $\mathrm{p} \neq 0$ and $\mathrm{q} \neq 0 .$ If the new mean and new s.d. become half of their original values, then $q$ is equal to