From a lot of $12$ items containing $3$ defectives, a sample of $5$ items is drawn at random. Let the random variable $\mathrm{X}$ denote the number of defective items in the sample. Let items in the sample be drawn one by one without replacement. If variance of $X$ is $\frac{m}{n}$, where $\operatorname{gcd}(m, n)=1$, then $n-m$ is equal to..........

  • [JEE MAIN 2024]
  • A

    $71$

  • B

    $34$

  • C

    $72$

  • D

    $76$

Similar Questions

If the mean and variance of the frequency distribution

$x_i$ $2$ $4$ $6$ $8$ $10$ $12$ $14$ $16$
$f_i$ $4$ $4$ $\alpha$ $15$ $8$ $\beta$ $4$ $5$

are $9$ and $15.08$ respectively, then the value of $\alpha^2+\beta^2-\alpha \beta$ is $............$.

  • [JEE MAIN 2023]

The mean and variance of $7$ observations are $8$ and $16,$ respectively. If five observations are $2, 4, 10,12,14,$ then the absolute difference of the remaining two observations is 

  • [JEE MAIN 2020]

Find the mean and variance for the first $10$ multiples of $3$

For a frequency distribution standard deviation is computed by applying the formula

The mean and the standard deviation (s.d.) of $10$ observations are $20$ and $2$ resepectively. Each of these $10$ observations is multiplied by $\mathrm{p}$ and then reduced by $\mathrm{q}$, where $\mathrm{p} \neq 0$ and $\mathrm{q} \neq 0 .$ If the new mean and new s.d. become half of their original values, then $q$ is equal to

  • [JEE MAIN 2020]