The sum of $100$ observations and the sum of their squares are $400$ and $2475$, respectively. Later on, three observations, $3, 4$ and $5$, were found to be incorrect . If the incorrect observations are omitted, then the variance of the remaining observations is

  • [JEE MAIN 2017]
  • A

    $8.25$

  • B

    $8.50$

  • C

    $8$

  • D

    $9$

Similar Questions

Let $r$ be the range and ${S^2} = \frac{1}{{n - 1}}\sum\limits_{i = 1}^n {{{({x_i} - \bar x)}^2}} $ be the $S.D.$ of a set of observations ${x_1},\,{x_2},\,.....{x_n}$, then

If $x_1, x_2,.....x_n$ are $n$ observations such that $\sum\limits_{i = 1}^n {x_i^2}  = 400$ and $\sum\limits_{i = 1}^n {{x_i}}  = 100$ , then possible value of $n$ among the following is 

Let $X _{1}, X _{2}, \ldots, X _{18}$ be eighteen observations such that $\sum_{ i =1}^{18}\left( X _{ i }-\alpha\right)=36 \quad$ and $\sum_{i=1}^{18}\left(X_{i}-\beta\right)^{2}=90,$ where $\alpha$ and $\beta$ are distinct real numbers. If the standard deviation of these observations is $1,$ then the value of $|\alpha-\beta|$ is ...... .

  • [JEE MAIN 2021]

From the data given below state which group is more variable, $A$ or $B$ ?

Marks $10-20$ $20-30$ $30-40$ $40-50$ $50-60$ $60-70$ $70-80$
Group $A$ $9$ $17$ $32$ $33$ $40$ $10$ $9$
Group $B$ $10$ $20$ $30$ $25$ $43$ $15$ $7$

Find the mean and variance of the frequency distribution given below:

$\begin{array}{|l|l|l|l|l|} \hline x & 1 \leq x<3 & 3 \leq x<5 & 5 \leq x<7 & 7 \leq x<10 \\ \hline f & 6 & 4 & 5 & 1 \\ \hline \end{array}$