The sum of $100$ observations and the sum of their squares are $400$ and $2475$, respectively. Later on, three observations, $3, 4$ and $5$, were found to be incorrect . If the incorrect observations are omitted, then the variance of the remaining observations is
$8.25$
$8.50$
$8$
$9$
The mean and the variance of five observations are $4$ and $5.20,$ respectively. If three of the observations are $3, 4$ and $4;$ then the absolute value of the difference of the other two observations, is
The following values are calculated in respect of heights and weights of the students of a section of Class $\mathrm{XI}:$
Height | Weight | |
Mean | $162.6\,cm$ | $52.36\,kg$ |
Variance | $127.69\,c{m^2}$ | $23.1361\,k{g^2}$ |
Can we say that the weights show greater variation than the heights?
Let $\mu$ be the mean and $\sigma$ be the standard deviation of the distribution
$X_i$ | $0$ | $1$ | $2$ | $3$ | $4$ | $5$ |
$f_i$ | $k+2$ | $2k$ | $K^{2}-1$ | $K^{2}-1$ | $K^{2}-1$ | $k-3$ |
where $\sum f_i=62$. if $[x]$ denotes the greatest integer $\leq x$, then $\left[\mu^2+\sigma^2\right]$ is equal $.........$.
The variance of the first $n$ natural numbers is
Two sets each of 20 observations, have the same standard derivation 5. The first set has a mean 17 and the second a mean 22. Determine the standard deviation of the set obtained by combining the given two sets.