From mean value theorem $f(b) - f(a) = $ $(b - a)f'({x_1});$   $a < {x_1} < b$ if $f(x) = {1 \over x}$, then ${x_1} = $

  • A

    $\sqrt {ab} $

  • B

    ${{a + b} \over 2}$

  • C

    ${{2ab} \over {a + b}}$

  • D

    ${{b - a} \over {b + a}}$

Similar Questions

If $g(x) = 2f (2x^3 - 3x^2) + f(6x^2 - 4x^3 - 3)$, $\forall  x \in R$ and $f"(x) > 0, \forall  x \in R$ , then $g'(x) > 0$ for $x$ belonging to

If the equation

${a_n}{x^{n - 1}} + \,{a_{n - 1}}{x^{n - 1}} + \,......\, + \,{a_1}x = 0,\,{a_1} \ne 0,n\, \geqslant \,2,$

has a positive root $x= \alpha ,$ then the equation 

$n{a_n}{x^{n - 1}} + \,(n - 1){a_{n - 1}}{x^{n - 1}} + \,......\, + \,{a_1} = 0$

has a positive root which is

In the mean value theorem, $f(b) - f(a) = (b - a)f'(c)$if $a = 4$, $b = 9$ and $f(x) = \sqrt x $ then the value of  $c$  is

Let $f: R \rightarrow R$ be a differentiable function such that $f(a)=0=f(b)$ and $f^{\prime}(a) f^{\prime}(b) > 0$ for some $a < b$. Then, the minimum number of roots of $f^{\prime}(x)=0$ in the interval $(a, b)$ is

  • [KVPY 2010]

For the function$x + {1 \over x},x \in [1,\,3]$, the value of $ c$  for the mean value theorem is