मध्यमान प्रमेय $f(b) - f(a) = (b - a)f'({x_1});$ $a < {x_1} < b$ से यदि $f(x) = \frac{1}{x}$, तो${x_1} = $
$\sqrt {ab} $
$\frac{{a + b}}{2}$
$\frac{{2ab}}{{a + b}}$
$\frac{{b - a}}{{b + a}}$
यदि $f(x) = 2x - {x^2}$ के लिए अन्तराल $[0, 1]$ में लैगरांज प्रमेय सत्यापित है, तो $c$ का मान, जो कि $[0,\,1]$ में होगा, है
मध्यमान प्रमेय $f(b) - f(a) = (b - a)f'(c)$ में यदि $a = 4$, $b = 9$ तथा $f(x) = \sqrt x $ हो, तो $c$ का मान है
माध्यमान प्रमेय सत्यापित कीजिए, यदि अंतराल $[a, b]$ में $f(x)=x^{2}-4 x-3,$ जहाँ $a=1$ और $b=4$ है।
यदि $f(x) = \cos x,0 \le x \le \frac{\pi }{2}$, तो मध्यमान प्रमेय की वास्तविक संख्या $ ‘c’$ है
यदि फलन $f(x)=2 x^{3}+ b x^{2}+ c x, x \in[-1,1]$ के लिए बिंदु $x=\frac{1}{2}$ पर रोले का प्रमेय लागू होता है, तो $2 b + c$ बराबर है