મધ્યકમાન પ્રમેય મુજબ $f(b) - f(a) = $ $(b - a)f'({x_1});$ $a < {x_1} < b$ જો $f(x) = {1 \over x}$, તો ${x_1} = $
$\sqrt {ab} $
${{a + b} \over 2}$
${{2ab} \over {a + b}}$
${{b - a} \over {b + a}}$
જો વિધેય $f(x) = 2x^3 + ax^2 + bx$ એ અંતરાલ $[-1, 1 ]$ પર બિંદુ $c = \frac{1}{2}$ આગળ રોલના પ્રમેયનું પાલન કરતું હોય $2a + b$ ની કિમંત મેળવો.
વિધેય $f(x) = {(x - 3)^2}$ એ અંતરાલ $[3, 4]$ માં મધ્યકમાન પ્રમેયનું પાલન કરે છે . જો વક્ર $y = {(x - 3)^2}$ પરનું બિંદુ મેળવો કે જેનો સ્પર્શકનો ઢાળએ બિંદુઑ $(3, 0)$ અને $(4, 1)$ ને જોડતી રેખાને સમાંતર છે .
$[2, 4]$ પર વ્યાખ્યાયિત વિધેય $f(x)=x^{2}$ માટે $[2, 4]$ પર મધ્યકમાન પ્રમેય ચકાસો.
આપેલ પૈકી ક્યૂ વિધેય રોલના પ્રમેયનું પાલન કરે છે ?
દ્રીઘાત સમીકરણ ${\text{ a}}{{\text{x}}^{\text{2}}}{\text{ + bx + c = 0 }}$ સ્વીકારો જ્યાં, $2a\,\, + \,\,3b\,\, + \,\,6c\,\, = \,\,0$ અને ${\text{g(x)}}\,\, = \,\,{\text{a}}\,\,\frac{{{{\text{x}}^{\text{3}}}}}{3}\,\, + \,\,{\text{b}}\,\frac{{{{\text{x}}^{\text{2}}}}}{{\text{2}}}\,\, + \,\,{\text{cx}}$ લો.
વિધાન $- 1 : (0, 1)$ અંતરાલમાં દ્વિઘાત સમીકરણના ઓછામાં ઓછું એક બીજ છે.
વિધાન $- 2 : [0, 1]$ અંતરાલમાં વિધેય $g(x)$ માટે રોલનો પ્રમેય લાગુ પાડી શકાય.