મધ્યકમાન પ્રમેય મુજબ $f(b) - f(a) = $ $(b - a)f'({x_1});$ $a < {x_1} < b$ જો $f(x) = {1 \over x}$, તો ${x_1} = $
$\sqrt {ab} $
${{a + b} \over 2}$
${{2ab} \over {a + b}}$
${{b - a} \over {b + a}}$
જો $f$ એ વિકલીનીય વિધેય હોય કે જેથી $f(2x + 1) = f(1 -2x)$ $\forall \,\,x \in R$ તથા $f(2) = f(5) = f(10)$ આપેેેલ હોય તો સમીકરણ $f'(x) = 0$ જ્યા $x \in \left( { - 5,10} \right)$ ના બિજો ઓછામાઓછા કેટલા મળે ?
જો વિધેય $f(x) = x(x-1)(x-2);\, x \in [0,\, 1/2]$ માટે મધ્યકમાન પ્રમેયનું પાલન કરે છે તો $C =? $
જો વિધેયો $f(x)=\frac{x^3}{3}+2 b x+\frac{a x^2}{2}$ અને $g(x)=\frac{x^3}{3}+a x+b x^2, a \neq 2 b$ ને સામાન્ય યરમ બિંદુ $(extreme\,point)$ હોય, તો $a+2 b+7=...........$
સરેરાશ મૂલ્ય પ્રમેયના અનુસાર $x \in $ [$0, 1$] અંતરાલમાં કયું વિધેય અનુસરતું નથી ?
વિધેય $\mathrm{f}(\mathrm{x})=\mathrm{x}^{3}-4 \mathrm{x}^{2}+8 \mathrm{x}+11$ કે જ્યાં $\mathrm{x} \in[0,1]$ માં મ્ધયકમાન પ્રમેય અનુસાર $c$ ની કિમંત મેળવો.