From the rate expression for the following reactions, determine their order of reaction and the dimensions of the rate constants.
$(iii)$ $CH _{3} CHO ( g ) \rightarrow CH _{4}( g )+ CO ( g ) \quad$ Rate $=k\left[ CH _{3} CHO \right]^{3 / 2}$
$(iii)$ Given rate $=k\left[ CH _{3} CHO \right]^{3 / 2}$
Therefore, order of $=\frac{3}{2}$
Dimension of $k=\frac{\text { Rate }}{\left[ CH _{3} CHO \right]^{\frac{3}{2}}}$
$=\frac{m o l\, L^{-1} \,s^{-1}}{\left(m o l \,L^{-1}\right)^{\frac{3}{2}}}$
$=\frac{m o l\, L^{-1} \,s^{-1}}{m o l^{\frac{3}{2}} \,L^{\frac{3}{2}}}$
$=L^{\frac{1}{2}} m o l^{\frac{1}{2}} s^{-1}$
If a reaction has the experimental rate expression rate $= K [A]^2[B]$, if the concentration of $A$ is doubled and the concentration of $B$ is halved, the what happens to the reaction rate
The experimental data for the reaction $2A + {B_2} \to 2AB$ isThe rate equation for the above data is
Exp. |
$[A]_0$ |
$[B]_0$ |
Rate (mole $s^{-1}$) |
$(1)$ |
$0.50$ |
$0.50$ |
$1.6 \times {10^{ - 4}}$ |
$(2)$ |
$0.50$ |
$1.00$ |
$3.2 \times {10^{ - 4}}$ |
$(3)$ |
$1.00$ |
$1.00$ |
$3.2 \times {10^4}$ |
The reaction $2{N_2}{O_5}$ $\rightleftharpoons$ $2{N_2}{O_4} + {O_2}$ is
Define following term / Give definition :
$(1)$ Elementary reaction
$(2)$ Complex reaction
For the reaction, $2A + B\,\to $ products , when the concentrations of $A$ and $B$ both were doubled, the rate of the reaction increased from $0.3\,mol\,L^{-1}\,s^{-1}$ to $2.4 \,mol\,L^{-1}\,s^{-1}.$ When the concentration of $A$ alone is doubled, the rate increased from $0.3\,mol\,L^{-1}\,s^{-1}$ to $0.6\,mol\,L^{-1}\,s^{-1}.$ Which one of the following statements is correct?