- Home
- Standard 11
- Physics
3-2.Motion in Plane
easy
Galileo writes that for angles of projection of a projectile at angles $(45 + \theta )$ and $(45 - \theta )$, the horizontal ranges described by the projectile are in the ratio of (if $\theta \le 45)$
A
$2:1$
B
$1:2$
C
$1:1$
D
$2:3$
Solution
(c) For angle $(45^\circ – \theta )$, $R = \frac{{{u^2}\sin (90^\circ – 2\theta )}}{g} = \frac{{{u^2}\cos 2\theta }}{g}$
For angle $(45^\circ + \theta )$, $R = \frac{{{u^2}\sin (90^\circ + 2\theta )}}{g} = \frac{{{u^2}\cos 2\theta }}{g}$
Standard 11
Physics
Similar Questions
Trajectory of particle in a projectile motion is given as $y=x-\frac{x^2}{80}$. Here, $x$ and $y$ are in metre. For this projectile motion match the following with $g=10\,m / s ^2$.
$Column-I$ | $Column-II$ |
$(A)$ Angle of projection | $(p)$ $20\,m$ |
$(B)$ Angle of velocity with horizontal after $4\,s$ | $(q)$ $80\,m$ |
$(C)$ Maximum height | $(r)$ $45^{\circ}$ |
$(D)$ Horizontal range | $(s)$ $\tan ^{-1}\left(\frac{1}{2}\right)$ |
medium