- Home
- Standard 11
- Physics
Gas obey $P^2V =$ constant. The initial temperature and volume are $T_0$ and $V_0$. If gas expands to volume $2V_0$, its final temperature becomes
$\sqrt 2 {T_0}$
$2T_0$
$T_0/2$
${T_0}/\sqrt 2 $
Solution
$\mathrm{P}^{2} \mathrm{V}=\mathrm{constant}$
$\left(\frac{\mathrm{nRT}}{\mathrm{V}}\right)^{2} \mathrm{V}=\mathrm{constant} ; \frac{\mathrm{T}^{2}}{\mathrm{V}}=\mathrm{constant}$
$\frac{\mathrm{T}_{1}^{2}}{\mathrm{V}_{1}}=\frac{\mathrm{T}_{2}^{2}}{\mathrm{V}_{2}}$
$\frac{\mathrm{T}^{2}}{\mathrm{V}_{0}}=\frac{\mathrm{T}_{2}^{2}}{2 \mathrm{V}_{0}} \Rightarrow\left(\mathrm{T}_{2}=\sqrt{2} \mathrm{T}_{0}\right)$
Similar Questions
A student records $\Delta Q,\Delta U$ and $\Delta W$ for a thermodynamic cycle $A \to B \to C \to A.$ Certain entries are missing. Find correct entry in following options
$AB$ | $BC$ | $CA$ | |
$\Delta W$ | $40\,J$ | $30\,J$ | |
$\Delta U$ | $50\,J$ | ||
$\Delta Q$ | $150\,J$ | $10\,J$ |