Give $\mathrm{MO}$ diagram and explain $\mathrm{Ne}_{2}$ molecule is not possible.
$\mathrm{Ne}_{2}(\mathrm{Z}=10) 1 s^{2} 2 s^{2} 2 p^{6} .$ In $\mathrm{Ne}_{2}$ valence orbital 8 electrons and affected in bond structure are 16 electrons.
Electron configuration in $\mathrm{MO}$ for $\mathrm{Ne}_{2}$ :
$\mathrm{KK}(\sigma 2 s)^{2}\left(\sigma^{*} 2 s\right)\left(\pi 2 p_{z}\right)^{2}\left(\pi 2 p_{x}\right)^{2}=\left(\pi 2 p_{y}\right)^{2}\left(\pi^{*} 2 p_{x}\right)^{2}=\left(\pi^{*} 2 p_{y}\right)^{2}\left(\sigma^{*} 2 p_{z}\right)^{2}$
Bond order $=\frac{1}{2}\left(\mathrm{~N}_{\mathrm{b}}-\mathrm{N}_{\mathrm{a}}\right)=\frac{1}{2}(10-10)=0$
$\mathrm{BO}$ is zero, So ti is unstable means does not exist. Energy diagram for $\mathrm{Ne}_{2}$ :
The total number of molecular orbitals formed from $2 \mathrm{~s}$ and $2 \mathrm{p}$ atomic orbitals of a diatomic molecule
Match each of the diatomic molecules in Column $I$ with its property / properties in Column $II$.
Column $I$ | Column $II$ |
$(A)$ $\mathrm{B}_2$ | $(p)$ Paramagnetic |
$(B)$ $\mathrm{N}_2$ | $(q)$ Undergoes oxidation |
$(C)$ $\mathrm{O}_2^{-}$ | $(r)$ Undergoes reduction |
$(D)$ $\mathrm{O}_2$ | $(s)$ Bond order $\geq 2$ |
$(t)$ Mixing of ' $\mathrm{s}$ ' and ' $\mathrm{p}$ ' orbitals |
Bond order is a concept in the molecular orbital theory. It depends on the number of electrons in the bonding and antibonding orbitals. Which of the following statements is true about it ? The bond order
The incorrect statement is :-
In which $O-O$ bond distance is minimum