Give answer of following questions.
$(i)$ Give molecular orbitals and type form by $\mathrm{LCAO}$ from $2{\rm{s}},2{{\rm{p}}_{\rm{x}}},2{{\rm{p}}_{\rm{y}}}$ and $2{{\rm{p}}_{\rm{z}}}$
$(ii)$ ${\rm{L}}{{\rm{i}}_2},{\rm{B}}{{\rm{e}}_2},{{\rm{C}}_2},{{\rm{N}}_2},{{\rm{O}}_2}{\rm{,}}{{\rm{F}}_2}$ for these molecule give energy other.
Molecular orbital formed by $LCAO$ :
AO |
Combination of atomic $\quad$ orbitals ($LCAO$) |
Molecular orbital $(\mathrm{MO})$ |
$2 s$ |
$\psi(2 s)+\psi(2 s)$ $\psi(2 s)-\psi(2 s)$ |
$BMO$ : $\sigma(2 s)$ $ABMO$ : $\sigma^{*}(2 s)$ |
$2 p_{z}$ |
$\psi\left(2 p_{z}\right)+\psi\left(2 p_{z}\right)$ $\psi\left(2 p_{z}\right)-\psi\left(2 p_{z}\right)$ |
$BMO$ : $\sigma *\left(2 p_{z}\right)$ $ABMO$ : $\sigma\left(2 p_{z}\right)$ |
$2 p_{x}$ |
$\psi\left(2 p_{x}\right)+\psi\left(2 p_{x}\right)$ $\psi\left(2 p_{x}\right)-\psi\left(2 p_{x}\right)$ |
$BMO$ : $\pi\left(2 p_{x}\right)$ $ABMO$ : $\pi *\left(2 p_{x}\right)$ |
$2 p_{y}$ |
$\psi\left(2 p_{y}\right)+\psi\left(2 p_{y}\right)$ $\psi\left(2 p_{y}\right)-\psi\left(2 p_{y}\right)$ |
$BMO$ : $\pi\left(2 p_{y}\right)$ $ABMO$ : $\pi *\left(2 p_{y}\right)$ |
Energy order of orbitals :
- The increasing order of energy of MO for
$\mathrm{Li}_{2}, \mathrm{Be}_{2}, \mathrm{~B}_{2}, \mathrm{C}_{2}, \mathrm{~N}_{2}$ are so under
$\sigma 1 s<\sigma^{*} 1 s<\sigma 2 s<\sigma^{*} 2 s<\left[\pi 2 p_{x}=\pi 2 p_{y}\right]<\sigma 2 p_{z}<\left[\pi^{*} 2 p_{x}=\pi^{*} 2 p_{y}\right]<\sigma^{*} 2 p_{z}$
$\rightarrow$ The increasing order of energies of $\mathrm{MO}$ for $\mathrm{O}_{2}$ and $\mathrm{F}_{2}$ is given below.
$\sigma 1 s<\sigma^{*} 1 s<\sigma 2 s<\sigma^{*} 2 s<\sigma 2 p_{z}<$
${\left[\pi 2 p_{x}=\pi 2 p_{y}\right]<\left[\pi^{*} 2 p_{x}=\pi^{*} 2 p_{y}\right]<\sigma^{*} 2 p_{z}}$
Which of the following best describes the diagram of molecular orbital?
In which of the following ionization processes the bond energy increases and the magnetic behaviour changes from paramagnetic to diamagnetic.
Which one of the following species does not exist under normal conditions ?
In the process, $O_2^ + \to O_2^{ + 2} + e^-$ the electron lost is from
Total number of electron present in $\left(\pi^*\right)$ molecular orbitals of $\mathrm{O}_2, \mathrm{O}_2^{+}$and $\mathrm{O}_2^{-}$is ............