Give electron configuration, bond order, Magnetic property and energy diagram for Baron $\left( {{{\rm{B}}_2}} \right)$ Molecule and write about it existence.
$\mathrm{B}_{2}(\mathrm{Z}=5) 1 s^{2} 2 s^{2} 2 p^{1}$ So, total electron in $\mathrm{B}_{2}=10$
Electron configuration in $\mathrm{MO}$ for $\mathrm{B}_{2}: \mathrm{KK}\left(\sigma_{2 s}\right)^{2}\left(\sigma^{*} 2 s\right)^{2}\left(\pi 2 p_{x}\right)^{1}\left(\pi 2 p_{y}\right)^{1} \quad$ (Because $\mathrm{B}_{2} \quad \pi 2 p<\sigma 2 p_{z}$ ) Bond order $=\frac{1}{2}\left(\mathrm{~N}_{\mathrm{b}}-\mathrm{N}_{\mathrm{a}}\right)=\frac{1}{2}(4-2)=1$
Two unpaired electron present in $\mathrm{B}_{2}$, So it is paramagnetic and Single bond so, it is stable. Bond length B - B $(159 \mathrm{pm})$ and
Bond energy $\mathrm{B}_{2} 290 \mathrm{~kJ} \mathrm{~mol}^{-1}$
Energy diagram for $\mathrm{B}_{2}$ Molecule is as under (fig).
Which one of the following molecules is paramagnetic?
Among the following, the paramagnetic compound is
Give electron configuration, magnetic property bond order and energy diagram for oxygen $\left( {{{\rm{O}}_2}} \right)$ molecule.
The paramagnetic nature of oxygen molecule is best explained on the basis of
When ${N_2}$ goes to $N_2^ + ,$ the $N - N$ bond distance ..... and when ${O_2}$ goes to $O_2^ + ,$ the $O - O$ bond distance .......