Given $(1 - 2x + 5x^2 - 10x^3) (1 + x)^n = 1 + a_1x + a_2x^2 + ....$ and that $a_1^2\,= 2a_2$ then the value of $n$ is
$6$
$2$
$5$
$3$
If the sum of the coefficients of all even powers of $x$ in the product $\left(1+x+x^{2}+\ldots+x^{2 n}\right)\left(1-x+x^{2}-x^{3}+\ldots+x^{2 n}\right)$ is $61,$ then $\mathrm{n}$ is equal to
If ${C_r}$ stands for $^n{C_r}$, the sum of the given series $\frac{{2(n/2)!(n/2)!}}{{n!}}[C_0^2 - 2C_1^2 + 3C_2^2 - ..... + {( - 1)^n}(n + 1)C_n^2]$, Where $n$ is an even positive integer, is
If the sum of the coefficients of all the positive powers of $x$, in the binomial expansion of $\left(x^{n}+\frac{2}{x^{5}}\right)^{7}$ is $939 ,$ then the sum of all the possible integral values of $n$ is
The sum of coefficients of integral power of $x$ in the binomial expansion ${\left( {1 - 2\sqrt x } \right)^{50}}$ is :
The sum of the coefficients in the expansion of ${(x + y)^n}$ is $4096$. The greatest coefficient in the expansion is