- Home
- Standard 11
- Mathematics
7.Binomial Theorem
normal
Given $(1 - 2x + 5x^2 - 10x^3) (1 + x)^n = 1 + a_1x + a_2x^2 + ....$ and that $a_1^2\,= 2a_2$ then the value of $n$ is
A
$6$
B
$2$
C
$5$
D
$3$
Solution
$( 1 – 2x + 5x^2 + 10x^3)$ $[ C_0 + C_1x + C_2x^2 + ….] $ $= 1 + a_1x + a_2x^2 + …..$
$a_1 = n – 2$ and $a_2 = \frac{{n(n – 1)}}{2}\,\, – \,\,2n\,\, + \,5$
put $a_1^2\,= 2a_2$
$(n – 2)^2 = n (n – 1) – 4n + 10$
$n^2 – 4n + 4 = n^2 – 5n + 10$
$n = 6$
Standard 11
Mathematics