7.Binomial Theorem
hard

If the Coefficient of $x^{30}$ in the expansion of $\left(1+\frac{1}{x}\right)^6\left(1+x^2\right)^7\left(1-x^3\right)^8 ; x \neq 0$ is $\alpha$, then $|\alpha|$ equals

A

$676$

B

$677$

C

$678$

D

$679$

(JEE MAIN-2024)

Solution

coeff of $x^{30}$ in $\frac{(x+1)^6\left(1+x^2\right)^7\left(1-x^3\right)^8}{x^6}$

coeff. of  $x^{36}$ in $(1+x)^6\left(1+x^2\right)^7\left(1-x^3\right)^8$

General term

${ }^6 \mathrm{C}_{\mathrm{r}_1}{ }^7 \mathrm{C}_{\mathrm{r}_2}{ }^8 \mathrm{C}_{\mathrm{r}_3}(-1)^{\mathrm{I}_3} \mathrm{x}^{\mathrm{I}_1+2 \mathrm{r}_2+3 \mathrm{r}_3}$

$\mathrm{r}_1+2 \mathrm{r}_2+3 \mathrm{r}_3=36$

Case-$I$ :    $r_1+2 r_2=12\left(\right.$ Taking $\left.r_3=8\right)$

$r_1$ $r_2$ $r_3$
$0$ $6$ $8$
$2$ $5$ $8$
$4$ $4$ $8$
$6$ $3$ $8$

case-$II$       $r_1+2 r_2=15\left(\right.$ Taking $\left.r_3=7\right)$

$r_1$ $r_2$ $r_3$
$1$ $7$ $7$
$3$ $6$ $7$
$5$ $5$ $7$

case-$III$      $r_1+2 r_2=18\left(\right.$ Taking $\left.r_3=6\right)$

$r_1$ $r_2$ $r_3$
$4$ $7$ $6$
$6$ $6$ $6$

$\begin{aligned} & \text { Coeff. }=7+(15 \times 21)+(15 \times 35)+(35) \\ & -(6 \times 8)-(20 \times 7 \times 8)-(6 \times 21 \times 8)+(15 \times 28) \\ & +(7 \times 28)=-678=\alpha \\ & |\alpha|=678\end{aligned}$

Standard 11
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.