Given a $G.P.$ with $a=729$ and $7^{\text {th }}$ term $64,$ determine $S_{7}$
$a=729 a_{7}=64$
Let $r$ be the common ratio of the $G.P.$ It is known that,
$a_{n}=a r^{n-1}$
$a_{7}=a r^{7-1}=(729) r^{6}$
$\Rightarrow 64=729 r^{6}$
$\Rightarrow r^{6}=\left(\frac{2}{3}\right)^{6}$
$\Rightarrow r=\frac{2}{3}$
Also, it is known that,
$S_{n}=\frac{a\left(1-r^{n}\right)}{1-r}$
$\therefore S_{7}=\frac{729\left(1-\left(\frac{2}{3}\right)^{7}\right)}{1-\frac{2}{3}}$
$=3 \times 729\left[1-\left(\frac{2}{3}\right)^{7}\right]$
$=(3)^{7}\left[\frac{(3)^{7}-(2)^{7}}{(3)^{7}}\right]$
$=(3)^{7}-(2)^{7}$
$=2187-128$
$=2059$
In a $G.P.,$ the $3^{rd}$ term is $24$ and the $6^{\text {th }}$ term is $192 .$ Find the $10^{\text {th }}$ term.
The sum of first four terms of a geometric progression $(G.P.)$ is $\frac{65}{12}$ and the sum of their respective reciprocals is $\frac{65}{18} .$ If the product of first three terms of the $G.P.$ is $1,$ and the third term is $\alpha$, then $2 \alpha$ is ....... .
Find the sum to indicated number of terms in each of the geometric progressions in $\left.x^{3}, x^{5}, x^{7}, \ldots n \text { terms (if } x \neq\pm 1\right)$
Find the sum of the following series up to n terms:
$5+55+555+\ldots$
The terms of a $G.P.$ are positive. If each term is equal to the sum of two terms that follow it, then the common ratio is