આપેલ સમગુણોત્તર શ્રેણી માટે $a=729$ અને $7$ મું પદ $64$ હોય તો $S$, શોધો. 

Vedclass pdf generator app on play store
Vedclass iOS app on app store

$a=729 a_{7}=64$

Let $r$ be the common ratio of the $G.P.$ It is known that,

$a_{n}=a r^{n-1}$

$a_{7}=a r^{7-1}=(729) r^{6}$

$\Rightarrow 64=729 r^{6}$

$\Rightarrow r^{6}=\left(\frac{2}{3}\right)^{6}$

$\Rightarrow r=\frac{2}{3}$

Also, it is known that,

$S_{n}=\frac{a\left(1-r^{n}\right)}{1-r}$

$\therefore S_{7}=\frac{729\left(1-\left(\frac{2}{3}\right)^{7}\right)}{1-\frac{2}{3}}$

$=3 \times 729\left[1-\left(\frac{2}{3}\right)^{7}\right]$

$=(3)^{7}\left[\frac{(3)^{7}-(2)^{7}}{(3)^{7}}\right]$

$=(3)^{7}-(2)^{7}$

$=2187-128$

$=2059$

Similar Questions

જો $a _{1}(>0), a _{2}, a _{3}, a _{4}, a _{5}$ સમગુણોતર શ્રેણીમાં હોય, $a _{2}+ a _{4}=2 a _{3}+1$ અને $3 a _{2}+ a _{3}=2 a _{4}$,હોય તો,$a _{2}+ a _{4}+2 a _{5}=\dots\dots\dots$ 

  • [JEE MAIN 2022]

સમગુણોત્તર શ્રેણીના પ્રથમ ચાર પદોનો સરવાળો $\frac{65}{12}$ અને તેમના વ્યસ્તનો સરવાળો $\frac{65}{18}$ છે. જે સમગુણોત્તર શ્રેણીના પ્રથમ ત્રણ પદનો ગુણાકાર $1$ અને ત્રીજુ પદ $\alpha$ હોય, તો $2 \alpha \,=.......$

  • [JEE MAIN 2021]

ધારોકે $a_1, a_2, a_3, \ldots$ એ વધતી પૂર્ણાંક સંખ્યાઓ ની સમગુણોતર શ્રેણી છે. જો ચોથા અને છઠા પદોનો ગુણાકાર $9$ હોય અને સાતમુપદ $24$ હોય, તો $a_1 a_9+a_2 a_4 a_9+a_5+a_7=...................$

  • [JEE MAIN 2023]

ઘન પદ ધરાવતી ગુણોત્તર શ્રેણીમાં દરેક પદ તેના પછી આવતા બે પદનો સરવાળો હોય તો તે શ્રેણીનો સામાન્ય ગુણોત્તર =.......

સમગુણોત્તર શ્રેણીમાં નિર્દેશિત પદોનો સરવાળો શોધો : $0.15,0.015,0.0015........$  પ્રથમ $20$ પદ