Given below are two statements

Statement $I$ : The electric force changes the speed of the charged particle and hence changes its kinetic energy: whereas the magnetic force does not change the kinetic energy of the charged particle

Statement $II$ : The electric force accelerates the positively charged particle perpendicular to the direction of electric field. The magnetic force accelerates the moving charged particle along the direction of magnetic field. In the light of the above statements, choose the most appropriate answer from the options given below

  • [JEE MAIN 2022]
  • A

    Both Statement $I$ and Statement $II$ are correct

  • B

    Both Statement $I$ and Statement $II$ are incorrect

  • C

    Statement $I$ is correct but Statement $II$ is incorrect

  • D

    Statement $I$ is incorrect but Statement $II$ is correct

Similar Questions

Two ions of masses $4 \,{amu}$ and $16\, amu$ have charges $+2 {e}$ and $+3 {e}$ respectively. These ions pass through the region of constant perpendicular magnetic field. The kinetic energy of both ions is same. Then :

  • [JEE MAIN 2021]

An electron is moving along $+x$ direction with a velocity of $6 \times 10^{6}\, ms ^{-1}$. It enters a region of uniform electric field of $300 \,V / cm$ pointing along $+ y$ direction. The magnitude and direction of the magnetic field set up in this region such that the electron keeps moving along the $x$ direction will be

  • [JEE MAIN 2020]

Electrons moving with different speeds enter a uniform magnetic field in a direction perpendicular to the field., time periods of rotation will be :

A magnetic field

A uniform beam of positively charged particles is moving with a constant velocity parallel to another beam of negatively charged particles moving with the same velocity in opposite direction separated by a distance $d.$ The variation of magnetic field $B$ along a perpendicular line draw between the two beams is best represented by