Given that; $A = B = C$. If $\vec A + \vec B = \vec C,$ then the angle between $\vec A$ and $\vec C$ is $\theta _1$. If $\vec A + \vec B+ \vec C = 0,$ then the angle between $\vec A$ and $\vec C$ is $\theta _2$. What is the relation between $\theta _1$ and $\theta _2$ ?

  • A

    $\theta _1=\theta _2$

  • B

    $\theta _1=\theta _2/2$

  • C

    $\theta _1=2\theta _2$

  • D

    None of these

Similar Questions

Which pair of the following forces will never give resultant force of $2\, N$

The vectors $\vec{A}$ and $\vec{B}$ are such that

$|\vec{A}+\vec{B}|=|\vec{A}-\vec{B}|$

The angle between the two vectors is

  • [AIPMT 2006]

Given $a+b+c+d=0,$ which of the following statements eare correct:

$(a)\;a, b,$ c, and $d$ must each be a null vector,

$(b)$ The magnitude of $(a+c)$ equals the magnitude of $(b+d)$

$(c)$ The magnitude of a can never be greater than the sum of the magnitudes of $b , c ,$ and $d$

$(d)$ $b + c$ must lie in the plane of $a$ and $d$ if $a$ and $d$ are not collinear, and in the line of a and $d ,$ if they are collinear ?

$\vec{A}$ is a vector of magnitude $2.7$ units due east. What is the magnitude and direction of vector $4 \vec{A}$ ?

Magnitudes of two vector $\overrightarrow A $ and $\overrightarrow B $ are $4$ units and $3$ units respectively. If these vectors are $(i)$ in same direction $(\theta = 0^o).$ $(ii)$ in opposite direction $(\theta = 180^o)$, then give the magnitude of resultant vector.