The magnitude of vector $\overrightarrow A ,\,\overrightarrow B $ and $\overrightarrow C $ are respectively $12, 5$ and $13$ units and $\overrightarrow A + \overrightarrow B = \overrightarrow C $ then the angle between $\overrightarrow A $ and $\overrightarrow B $ is

  • A

    $0$

  • B

    $\pi $

  • C

    $\pi /2$

  • D

    $\pi /4$

Similar Questions

A particle is simultaneously acted by two forces equal to $4\, N$ and $3 \,N$. The net force on the particle is

${d \over {dx}}({x^2}{e^x}\sin x) = $

A body is at rest under the action of three forces, two of which are ${\vec F_1} = 4\hat i,\,{\vec F_2} = 6\hat j,$ the third force is

When vector $\overrightarrow{ A }=2 \hat{ i }+3 \hat{ j }+2 \hat{ k }$ is subtracted from vector $\vec{B}$, it gives a vector equal to $2 \hat{j}$. Then the magnitude of vector $\vec{B}$ will be:

  • [JEE MAIN 2023]

A scooter going due east at $10\, ms^{-1}$ turns right through an angle of $90^°$. If the speed of the scooter remains unchanged in taking turn, the change is the velocity of the scooter is