The magnitude of vector $\overrightarrow A ,\,\overrightarrow B $ and $\overrightarrow C $ are respectively $12, 5$ and $13$ units and $\overrightarrow A + \overrightarrow B = \overrightarrow C $ then the angle between $\overrightarrow A $ and $\overrightarrow B $ is
$0$
$\pi $
$\pi /2$
$\pi /4$
Three forces given by vectors $2 \hat{i}+2 \hat{j}, 2 \hat{i}-2 \hat{j}$ and $-4 \hat{i}$ are acting together on a point object at rest. The object moves along the direction
Five equal forces of $10 \,N$ each are applied at one point and all are lying in one plane. If the angles between them are equal, the resultant force will be ........... $\mathrm{N}$
Given $a+b+c+d=0,$ which of the following statements eare correct:
$(a)\;a, b,$ c, and $d$ must each be a null vector,
$(b)$ The magnitude of $(a+c)$ equals the magnitude of $(b+d)$
$(c)$ The magnitude of a can never be greater than the sum of the magnitudes of $b , c ,$ and $d$
$(d)$ $b + c$ must lie in the plane of $a$ and $d$ if $a$ and $d$ are not collinear, and in the line of a and $d ,$ if they are collinear ?
Two forces, each of magnitude $F$ have a resultant of the same magnitude $F$. The angle between the two forces is....... $^o$
Two forces, ${F_1}$ and ${F_2}$ are acting on a body. One force is double that of the other force and the resultant is equal to the greater force. Then the angle between the two forces is