Given the sets $A=\{1,3,5\}, B=\{2,4,6\}$ and $C=\{0,2,4,6,8\},$ which of the following may be considered as universal set $(s)$ for all the three sets $A$, $B$ and $C$

$\varnothing$

Vedclass pdf generator app on play store
Vedclass iOS app on app store

$A \not\subset \varnothing ,B \not\subset \varnothing ,C \not\subset \varnothing $

Therefore, $\varnothing$ cannot be the universal set for the sets $A , B$ and $C$.

Similar Questions

In each of the following, determine whether the statement is true or false. If it is true, prove it. If it is false, give an example.

If $x \in A$ and $A \not\subset B$, then $x \in B$

Write the following intervals in set-builder form :

$\left( { - 3,0} \right)$

How many elements has $P(A),$ if $A=\varnothing ?$

List all the elements of the following sers :

$C = \{ x:x$ is an integer ${\rm{; }}{x^2} \le 4\} $

In the following state whether $A=B$ or not :

$A=\{4,8,12,16\} ; B=\{8,4,16,18\}$