Which of the following pairs of sets are equal ? Justify your answer.

$A = \{ \,n:n \in Z$ and ${n^2}\, \le \,4\,\} $ and $B = \{ \,x:x \in R$ and ${x^2} - 3x + 2 = 0\,\} .$

Vedclass pdf generator app on play store
Vedclass iOS app on app store

$A=\{-2,-1,0,1,2\}, B=\{1,2\} .$ Since $0 \in A$ and $0 \notin B, A$ and $B$ are not equal sets.

Similar Questions

Write down all the subsets of the following sets

$\{ a,b\} $

Which of the following is a true statement

In the following state whether $\mathrm{A = B}$ or not :

$A = \{ 2,4,6,8,10\} ;B = \{ x:x$ is positiveeven integer and $x\, \le \,10\} $

Make correct statements by filling in the symbols $\subset$ or $ \not\subset $ in the blank spaces:

$\{ x:x$ is an even natural mumber $\}  \ldots \{ x:x$ is an integer $\} $

In each of the following, determine whether the statement is true or false. If it is true, prove it. If it is false, give an example.

If $A \not\subset B$ and $B \not\subset C,$ then $A \not\subset C$