$A=\{1,3,5\}, B=\{2,4,6\}$ અને $C=\{0,2,4,6,8\},$ આપેલ ગણ છે. આ ત્રણ ગણ $A, B$ અને $C$ માટે નીચેનામાંથી કયા ગણને સાર્વત્રિક ગણ તરીકે લઈ શકાય. $\varnothing$
$A \not\subset \varnothing ,B \not\subset \varnothing ,C \not\subset \varnothing $
Therefore, $\varnothing$ cannot be the universal set for the sets $A , B$ and $C$.
વિધાન સત્ય છે કે અસત્ય તેની ચકાસણી કરો : $\{a\} \subset\{a, b, c\}$
ગણ દર્શાવે છે ? તમારો જવાબ ચકાસો : આ પ્રકરણના બધા પ્રશ્નોનો સમૂહ
ડાબી બાજુએ યાદીની રીતે દર્શાવેલ દરેક ગણના જમણી માજુએ ગુણ ધર્મની રીતે દર્શાવેલા ગણા સાથે યોગ્ય જોડકાં બનાવો.
$(i)$ $\{ P,R,I,N,C,A,L\} $ | $(a)$ $\{ x:x$ એ ધન પૂર્ણાક છે અને $18 $ નો ભાજક છે. $\} $ |
$(ii)$ $\{ \,0\,\} $ | $(b)$ $\{ x:x$ એ પૂર્ણાક છે અને ${x^2} - 9 = 0\} $ |
$(iii)$ $\{ 1,2,3,6,9,18\} $ | $(c)$ $\{ x:x$ એ પૂર્ણાક છે અને $x + 1 = 1\} $ |
$(iv)$ $\{ 3, - 3\} $ | $(d)$ $\{ x:x$ એ $PRINCIPAL$ શબ્દનો મૂળાક્ષર છે. $\} $ |
$A=\{a, e, i, o, u\}$ અને $B=\{a, b, c, d\}$ લો. $A$ એ $B$ નો ઉપગણ છે ? ના (શા માટે ?). $B$ એ $A$ નો ઉપગણ છે? ના (શા માટે ?)
ગણ $\{1, 2, 3, 4\}$ ના અરિકત ઉપગણની સંખ્યા મેળવો.