Ice formed over lakes has
Very high thermal conductivity and helps in further ice formation
Very low conductivity and retards further formation of ice
It permits quick convection and retards further formation of ice
It is very good radiator
A long metallic bar is carrying heat from one of its ends to the other end under steady-state. The variation of temperature $\theta$ along the length $x$ of the bar from its hot end is best described by which of the following figures?
The temperature gradient in a rod of $0.5 m$ long is ${80^o}C/m$. If the temperature of hotter end of the rod is ${30^o}C$, then the temperature of the cooler end is ...... $^oC$
The three rods shown in figure have identical dimensions. Heat flows from the hot end at a rate of $40 \,W$ in the arrangement $(a)$. Find the rates of heat flow when the rods are joined as in arrangement $(b)$ is ......... $W$ (Assume $K_al=200 \,W / m ^{\circ} C$ and $\left.K_{c u}=400 \,W / m ^{\circ} C \right)$
Value of temperature gradient is $80\,^oC/m$ on a rod of $0.5\,m$ length. Temperature of hot end is $30\,^oC$, then what is the temperature of cold end ?
A partition wall has two layers $A$ and $B$ in contact, each made of a different material. They have the same thickness but the thermal conductivity of layer $A$ is twice that of layer $B$. If the steady state temperature difference across the wall is $60K$, then the corresponding difference across the layer $A$ is ....... $K$