If $\sin \theta + 2\sin \phi + 3\sin \psi = 0$ and $\cos \theta + 2\cos \phi + 3\cos \psi = 0$ , then the value of $\cos 3\theta + 8\cos 3\phi + 27\cos 3\psi = $
$\cos (3\theta + 3\phi + 3\psi )$
$18\cos (\theta + \phi + \psi )$
$6\cos (\theta + \phi + \psi )$
$36\cos (\theta + \phi + \psi )$
The equation $\sin x\cos x = 2$ has
The general solution of the equation $(\sqrt 3 - 1)\sin \theta + (\sqrt 3 + 1)\cos \theta = 2$ is
The sum of all values of $x$ in $[0,2 \pi]$, for which $\sin x+\sin 2 x+\sin 3 x+\sin 4 x=0$, is equal to:
If $0 \le x \le \pi $ and ${81^{{{\sin }^2}x}} + {81^{{{\cos }^2}x}} = 30$, then $x =$
The equation, $sin^2 \theta - \frac{4}{{{{\sin }^3}\,\,\theta \,\, - \,\,1}} = 1$$ -\frac{4}{{{{\sin }^3}\,\,\theta \,\, - \,\,1}}$ has :