If $\sin \theta  + 2\sin \phi  + 3\sin \psi  = 0$ and $\cos \theta  + 2\cos \phi  + 3\cos \psi  = 0$ , then the value of $\cos 3\theta  + 8\cos 3\phi  + 27\cos 3\psi  = $ 

  • A

    $\cos (3\theta  + 3\phi  + 3\psi )$

  • B

    $18\cos (\theta  + \phi  + \psi )$

  • C

    $6\cos (\theta  + \phi  + \psi )$

  • D

    $36\cos (\theta  + \phi  + \psi )$

Similar Questions

The equation $\sin x\cos x = 2$ has

The general solution of the equation $(\sqrt 3 - 1)\sin \theta + (\sqrt 3 + 1)\cos \theta = 2$ is

The sum of all values of $x$ in $[0,2 \pi]$, for which $\sin x+\sin 2 x+\sin 3 x+\sin 4 x=0$, is equal to:

  • [JEE MAIN 2021]

If $0 \le x \le \pi $ and ${81^{{{\sin }^2}x}} + {81^{{{\cos }^2}x}} = 30$, then $x =$

  • [JEE MAIN 2021]

The equation, $sin^2 \theta - \frac{4}{{{{\sin }^3}\,\,\theta \,\, - \,\,1}} = 1$$ -\frac{4}{{{{\sin }^3}\,\,\theta \,\, - \,\,1}}$ has :