Prove that
$\cos 2 x \cos \frac{x}{2}-\cos 3 x \cos \frac{9 x}{2}=\sin 5 x \sin \frac{5 x}{2}$
We have
${\text{L}}{\text{.H}}{\text{.S}}{\text{. }} = \frac{1}{2}\left[ {2\cos 2x\cos \frac{x}{2} - 2\cos \frac{{9x}}{2}\cos 3x} \right]$
$ = {1}{2}[ \cos \left( {2x + \frac{x}{2}} \right) + \cos \left( {2x - \frac{x}{2}} \right)$
$ - \cos \left( {\frac{{9x}}{2} + 3x} \right) - \cos \left( {\frac{{9x}}{2} - 3x} \right) $
$ = \frac{1}{2}\left[ {\cos \frac{{5x}}{2} + \cos \frac{{3x}}{2} - \cos \frac{{15x}}{2} - \cos \frac{{3x}}{2}} \right]$
$ = \frac{1}{2}\left[ {\cos \frac{{5x}}{2} - \cos \frac{{15x}}{2}} \right]$
$ = \frac{1}{2}\left[ { - 2\sin \left\{ {\frac{{\frac{{5x}}{2} + \frac{{15x}}{2}}}{2}} \right\}\sin \left\{ {\frac{{\frac{{5x}}{2} - \frac{{15x}}{2}}}{2}} \right\}} \right]$
$ = - \sin 5x\sin \left( { - \frac{{5x}}{2}} \right)$
$ = \sin 5x\sin \frac{{5x}}{2} = R.H.S.$
The total number of solution of $sin^4x + cos^4x = sinx\, cosx$ in $[0, 2\pi ]$ is equal to
The solution of $\frac{1}{2} +cosx + cos2x + cos3x + cos4x = 0$ is
The most general value of $\theta $ which will satisfy both the equations $\sin \theta = - \frac{1}{2}$ and $\tan \theta = \frac{1}{{\sqrt 3 }}$ is
If $4{\sin ^2}\theta + 2(\sqrt 3 + 1)\cos \theta = 4 + \sqrt 3 $, then the general value of $\theta $ is
One root of the equation $\cos x - x + \frac{1}{2} = 0$ lies in the interval