Prove that
$\cos 2 x \cos \frac{x}{2}-\cos 3 x \cos \frac{9 x}{2}=\sin 5 x \sin \frac{5 x}{2}$
We have
${\text{L}}{\text{.H}}{\text{.S}}{\text{. }} = \frac{1}{2}\left[ {2\cos 2x\cos \frac{x}{2} - 2\cos \frac{{9x}}{2}\cos 3x} \right]$
$ = {1}{2}[ \cos \left( {2x + \frac{x}{2}} \right) + \cos \left( {2x - \frac{x}{2}} \right)$
$ - \cos \left( {\frac{{9x}}{2} + 3x} \right) - \cos \left( {\frac{{9x}}{2} - 3x} \right) $
$ = \frac{1}{2}\left[ {\cos \frac{{5x}}{2} + \cos \frac{{3x}}{2} - \cos \frac{{15x}}{2} - \cos \frac{{3x}}{2}} \right]$
$ = \frac{1}{2}\left[ {\cos \frac{{5x}}{2} - \cos \frac{{15x}}{2}} \right]$
$ = \frac{1}{2}\left[ { - 2\sin \left\{ {\frac{{\frac{{5x}}{2} + \frac{{15x}}{2}}}{2}} \right\}\sin \left\{ {\frac{{\frac{{5x}}{2} - \frac{{15x}}{2}}}{2}} \right\}} \right]$
$ = - \sin 5x\sin \left( { - \frac{{5x}}{2}} \right)$
$ = \sin 5x\sin \frac{{5x}}{2} = R.H.S.$
One of the solutions of the equation $8 \sin ^3 \theta-7 \sin \theta+\sqrt{3} \cos \theta=0$ lies in the interval
If $\tan \theta + \tan 2\theta + \sqrt 3 \tan \theta \tan 2\theta = \sqrt 3 ,$ then
The solution of the equation $\sec \theta - {\rm{cosec}}\theta = \frac{4}{3}$ is
If $2{\tan ^2}\theta = {\sec ^2}\theta ,$ then the general value of $\theta $ is
If $r\,\sin \theta = 3,r = 4(1 + \sin \theta ),\,\,0 \le \theta \le 2\pi ,$ then $\theta = $