The number of solution of the equation $2\cos ({e^x}) = {5^x} + {5^{ - x}}$, are

  • [IIT 1992]
  • A

    No solution

  • B

    One solution

  • C

    Two solutions

  • D

    Infinitely many solutions

Similar Questions

The solution of the equation $\sec \theta - {\rm{cosec}}\theta = \frac{4}{3}$ is

General solution of the equation $\cot \theta - \tan \theta = 2$ is

Let $P = \left\{ {\theta :\sin \,\theta  - \cos \,\theta  = \sqrt 2 \,\cos \,\theta } \right\}$ and $Q = \left\{ {\theta :\sin \,\theta  + \cos \,\theta  = \sqrt {2\,} \sin \,\theta } \right\}$ be two sets. Then

  • [JEE MAIN 2016]

Let,$S=\left\{\theta \in[0,2 \pi]: 8^{2 \sin ^{2} \theta}+8^{2 \cos ^{2} \theta}=16\right\}$. Then $n ( S )+\sum_{\theta \in S}\left(\sec \left(\frac{\pi}{4}+2 \theta\right) \operatorname{cosec}\left(\frac{\pi}{4}+2 \theta\right)\right)$ is equal to.

  • [JEE MAIN 2022]

The set of angles btween $0$ & $2\pi $ satisfying the equation $4\, cos^2 \, \theta - 2 \sqrt 2 \, cos \,\theta - 1 = 0$ is