If $\alpha ,\,\beta ,\,\gamma ,\,\delta $ are the smallest positive angles in ascending order of magnitude which have their sines equal to the positive quantity $k$ , then the value of $4\sin \frac{\alpha }{2} + 3\sin \frac{\beta }{2} + 2\sin \frac{\gamma }{2} + \sin \frac{\delta }{2}$ is equal to 

  • A

    $2\sqrt {\left( {1 - k} \right)} $

  • B

    $\frac{1}{2}\sqrt {\left( {1 + k} \right)} $

  • C

    $2\sqrt {\left( {1 + k} \right)} $

  • D

    None of these

Similar Questions

The equation ${\sin ^4}x + {\cos ^4}x + \sin 2x + \alpha = 0$ is solvable for

The number of real solutions $x$ of the equation $\cos ^2(x \sin (2 x))+\frac{1}{1+x^2}=\cos ^2 x+\sec ^2 x$ is

  • [KVPY 2018]

For each positive real number $\lambda$. Let $A_\lambda$ be the set of all natural numbers $n$ such that $|\sin (\sqrt{n+1})-\sin (\sqrt{n})|<\lambda$. Let $A_\lambda^c$ be the complement of $A_\lambda$ in the set of all natural numbers. Then,

  • [KVPY 2016]

One root of the equation $\cos x - x + \frac{1}{2} = 0$ lies in the interval

The number of solutions that the equation $sin5\theta cos3\theta  = sin9\theta cos7\theta $ has in $\left[ {0,\frac{\pi }{4}} \right]$ is