If sum of all the solutions of the equation $8\cos x \cdot \left( {\cos \left( {\frac{\pi }{6} + x} \right) \cdot \cos \left( {\frac{\pi }{6} - x} \right) - \frac{1}{2}} \right) = 1$ in $\left[ {0,\pi } \right]$ is $k\pi $then $k$ is equal to :
$\frac{{13}}{9}$
$\frac{8}{9}$
$\frac{{20}}{9}$
$\frac{2}{3}$
If $\tan (\pi \cos \theta ) = \cot (\pi \sin \theta ),$ then the value of $\cos \left( {\theta - \frac{\pi }{4}} \right) =$
Find the solution of $\sin x=-\frac{\sqrt{3}}{2}$
If $\sin 2\theta = \cos 3\theta $ and $\theta $ is an acute angle, then $\sin \theta $ is equal to
If $\cos \theta + \sec \theta = \frac{5}{2}$, then the general value of $\theta $ is
The set of values of $‘a’$ for which the equation, $cos\, 2x + a\, sin\, x = 2a - 7$ possess a solution is :