If $\sin \,\theta + \sqrt 3 \cos \,\theta = 6x - {x^2} - 11,x \in R$ , $0 \le \theta \le 2\pi $ , then the equation has solution for
one value of $x$
two value of $x$
infinite value of $x$
no value of $x$
$\tan \,{20^o}\cot \,{10^o}\cot \,{50^o}$ is equal to
The number of solutions of the equation $2 \theta-\cos ^{2} \theta+\sqrt{2}=0$ is $R$ is equal to
If $\theta $ and $\phi $ are acute satisfying $\sin \theta = \frac{1}{2},$ $\cos \phi = \frac{1}{3},$ then $\theta + \phi \in $
If $\cot \theta + \cot \left( {\frac{\pi }{4} + \theta } \right) = 2$, then the general value of $\theta $ is
The sum of solutions of the equation $\frac{\cos \mathrm{x}}{1+\sin \mathrm{x}}=|\tan 2 \mathrm{x}|, \mathrm{x} \in\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)-\left\{\frac{\pi}{4},-\frac{\pi}{4}\right\}$ is :