Trigonometrical Equations
normal

If $\sin \,\theta  + \sqrt 3 \cos \,\theta  = 6x - {x^2} - 11,x \in R$ , $0 \le \theta  \le 2\pi $ , then the equation has solution for

A

one value of $x$

B

two value of $x$

C

infinite value of $x$

D

no value of $x$

Solution

$\sin \theta+\sqrt{3} \cos \theta=-2-(x-3)^{2}$

minimum vlaue of $\sin \theta+\sqrt{3} \cos \theta$ is $-2$

Hence solution of equation is possible only if $x=3$

Standard 11
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.