If $\sin \,\theta  + \sqrt 3 \cos \,\theta  = 6x - {x^2} - 11,x \in R$ , $0 \le \theta  \le 2\pi $ , then the equation has solution for

  • A

    one value of $x$

  • B

    two value of $x$

  • C

    infinite value of $x$

  • D

    no value of $x$

Similar Questions

$\tan \,{20^o}\cot \,{10^o}\cot \,{50^o}$ is equal to

The number of solutions of the equation $2 \theta-\cos ^{2} \theta+\sqrt{2}=0$ is $R$ is equal to

  • [JEE MAIN 2022]

If $\theta $ and $\phi $ are acute satisfying $\sin \theta = \frac{1}{2},$ $\cos \phi = \frac{1}{3},$ then $\theta + \phi \in $

  • [IIT 2004]

If $\cot \theta + \cot \left( {\frac{\pi }{4} + \theta } \right) = 2$, then the general value of $\theta $ is

The sum of solutions of the equation $\frac{\cos \mathrm{x}}{1+\sin \mathrm{x}}=|\tan 2 \mathrm{x}|, \mathrm{x} \in\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)-\left\{\frac{\pi}{4},-\frac{\pi}{4}\right\}$ is :

  • [JEE MAIN 2021]