- Home
- Standard 11
- Mathematics
Trigonometrical Equations
normal
If $\sin \,\theta + \sqrt 3 \cos \,\theta = 6x - {x^2} - 11,x \in R$ , $0 \le \theta \le 2\pi $ , then the equation has solution for
A
one value of $x$
B
two value of $x$
C
infinite value of $x$
D
no value of $x$
Solution
$\sin \theta+\sqrt{3} \cos \theta=-2-(x-3)^{2}$
minimum vlaue of $\sin \theta+\sqrt{3} \cos \theta$ is $-2$
Hence solution of equation is possible only if $x=3$
Standard 11
Mathematics