The value of $\theta $ satisfying the given equation $\cos \theta + \sqrt 3 \sin \theta = 2,$ is
$\frac{\pi }{3}$
$\frac{{5\pi }}{3}$
$\frac{{2\pi }}{3}$
$\frac{{4\pi }}{3}$
The equation $\sqrt 3 \sin x + \cos x = 4$ has
Let $f(x) = sinx + 2sin^2x + 3sin^3x + 4sin^4x+....\infty $ , then number of solution $(s)$ of equation $f(x) = 2$ in $x \in \left[ { - \pi ,\pi } \right] - \left\{ { \pm \frac{\pi }{2}} \right\}$ is
If $2\sin \theta + \tan \theta = 0$, then the general values of $\theta $ are
Let $S=\left\{\theta \in[-\pi, \pi]-\left\{\pm \frac{\pi}{2}\right\}: \sin \theta \tan \theta+\tan \theta=\sin 2 \theta\right\} \text {. }$ If $T =\sum_{\theta \in S } \cos 2 \theta$, then $T + n ( S )$ is equal
If $2{\cos ^2}x + 3\sin x - 3 = 0,\,\,0 \le x \le {180^o}$, then $x =$