$\sin 6\theta + \sin 4\theta + \sin 2\theta = 0,$ then $\theta = $
$\frac{{n\pi }}{4}$ or $n\pi \pm \frac{\pi }{3}$
$\frac{{n\pi }}{4}$ or $n\pi \pm \frac{\pi }{6}$
$\frac{{n\pi }}{4}$ or $2n\pi \pm \frac{\pi }{6}$
None of these
If $\sec 4\theta - \sec 2\theta = 2$, then the general value of $\theta $ is
Let $S=\{\theta \in[0,2 \pi): \tan (\pi \cos \theta)+\tan (\pi \sin \theta)=0\}$.
Then $\sum_{\theta \in S } \sin ^2\left(\theta+\frac{\pi}{4}\right)$ is equal to
The sum of solutions of the equation $\frac{\cos \mathrm{x}}{1+\sin \mathrm{x}}=|\tan 2 \mathrm{x}|, \mathrm{x} \in\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)-\left\{\frac{\pi}{4},-\frac{\pi}{4}\right\}$ is :
Find the value of $\tan \frac{\pi}{8}$
The general solution of $\tan 3x = 1$ is