Trigonometrical Equations
normal

If $\alpha ,\beta ,\gamma $ be the angles made by a line with $x, y$ and $z$ axes respectively so that $2\left( {\frac{{{{\tan }^2}\,\alpha }}{{1 + {{\tan }^2}\,\alpha }} + \frac{{{{\tan }^2}\,\beta }}{{1 + {{\tan }^2}\,\beta }} + \frac{{{{\tan }^2}\,\gamma }}{{1 + {{\tan }^2}\,\gamma }}} \right) = 3\,{\sec ^2}\,\frac{\theta }{2},$ then $\theta =$

A

$\frac{\pi }{{12}}$

B

$\frac{\pi }{{10}}$

C

$\frac{\pi }{{6}}$

D

$\frac{\pi }{{3}}$

Solution

We know that.

$\cos ^{2} \alpha+\cos ^{2} \beta+\cos ^{2} \gamma=1 \Rightarrow \Sigma \cos ^{2} \alpha=1 \ldots(i)$

Given that

$2\left(\frac{\tan ^{2} \alpha}{1+\tan ^{2} \alpha}+\frac{\tan ^{2} \beta}{1+\tan ^{2} \beta}+\frac{\tan ^{2} \gamma}{1+\tan ^{2} \gamma}\right)=3 \sec ^{2} \frac{\theta}{2}$

${\Rightarrow 2\left(\sin ^{2} \alpha+\sin ^{2} \beta+\sin ^{2} \gamma\right)=3 \sec ^{2} \frac{\theta}{2}} $

${\Rightarrow 4 \cos ^{2} \frac{\theta}{2}=3 \quad[\text { From }(\mathrm{i})]} $

${\Rightarrow \cos \theta=\frac{1}{2} \Rightarrow \theta=\frac{\pi}{3}}$

Standard 11
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.