The number of solutions to the equation $\cos ^4 x+\frac{1}{\cos ^2 x}=\sin ^4 x+\frac{1}{\sin ^2 x}$ in the interval $[0,2 \pi]$ is

  • [KVPY 2014]
  • A

    $6$

  • B

    $4$

  • C

    $2$

  • D

    $0$

Similar Questions

The number of solution of the equation,$\sum\limits_{r = 1}^5 {\cos (r\,x)} $ $= 0$ lying in $(0, \pi)$ is :

Let $S=\{\theta \in[0,2 \pi): \tan (\pi \cos \theta)+\tan (\pi \sin \theta)=0\}$.

Then $\sum_{\theta \in S } \sin ^2\left(\theta+\frac{\pi}{4}\right)$ is equal to

  • [JEE MAIN 2023]

The set of values of $x$ satisfying the equation,${2^{\tan \,\,\left( {x\,\, - \,\,{\textstyle{\pi  \over 4}}} \right)}}$ $- 2$${\left( {0.25} \right)^{\frac{{{{\sin }^2}\,\left( {x\,\, - \,\,{\textstyle{\pi  \over 4}}} \right)}}{{\cos \,\,2x}}}}$ $+ 1 = 0$, is :

Find the value of $\tan \frac{\pi}{8}$

The number of all possible triplets $(a_1 , a_2 , a_3)$ such that $a_1+ a_2 \,cos \, 2x + a_3 \, sin^2 x = 0$ for all $x$ is