The number of solutions to the equation $\cos ^4 x+\frac{1}{\cos ^2 x}=\sin ^4 x+\frac{1}{\sin ^2 x}$ in the interval $[0,2 \pi]$ is

  • [KVPY 2014]
  • A

    $6$

  • B

    $4$

  • C

    $2$

  • D

    $0$

Similar Questions

No. of solution of equation $sin^{65}x\, -\, cos^{65}x =\, -1$ is, if $x \in (-\pi , \pi )$

If $2(\sin x - \cos 2x) - \sin 2x(1 + 2\sin x)2\cos x = 0$ then

If $\sec 4\theta - \sec 2\theta = 2$, then the general value of $\theta $ is

  • [IIT 1963]

Find the value of $\tan \frac{\pi}{8}$

The roots of the equation $1 - \cos \theta = \sin \theta .\sin \frac{\theta }{2}$ is