The number of solutions to the equation $\cos ^4 x+\frac{1}{\cos ^2 x}=\sin ^4 x+\frac{1}{\sin ^2 x}$ in the interval $[0,2 \pi]$ is
$6$
$4$
$2$
$0$
No. of solution of equation $sin^{65}x\, -\, cos^{65}x =\, -1$ is, if $x \in (-\pi , \pi )$
If $2(\sin x - \cos 2x) - \sin 2x(1 + 2\sin x)2\cos x = 0$ then
If $\sec 4\theta - \sec 2\theta = 2$, then the general value of $\theta $ is
Find the value of $\tan \frac{\pi}{8}$
The roots of the equation $1 - \cos \theta = \sin \theta .\sin \frac{\theta }{2}$ is