- Home
- Standard 11
- Mathematics
If $\alpha ,\,\beta ,\,\gamma $ and $\delta $ are the solutions of the equation $\tan \left( {\theta + \frac{\pi }{4}} \right) = 3\,\tan \,3\theta $ , no two of which have equal tangents, then the value of $tan\, \alpha + tan\, \beta + tan\, \gamma + tan\, \delta $ is
$1$
$-1$
$2$
$0$
Solution
We have.
$\tan \left(\theta+\frac{\pi}{4}\right)=3 \tan 3 \theta$
$\Rightarrow \frac{1+\tan \theta}{1-\tan \theta}=3 \cdot \frac{3 \tan \theta-\tan ^{3} \theta}{1-3 \tan ^{2} \theta}$
$\Rightarrow \frac{1+t}{1-t}=3\left(\frac{3 t-t^{3}}{1-3 t^{2}}\right) \quad[\text { putting } t=\tan \theta]$
$\Rightarrow 3 t^{4}-6 t^{2}+8 t-1=0$
$\mathrm{So}, \mathrm{t}_{1}+\mathrm{t}_{2}+\mathrm{t}_{3}+\mathrm{t}_{4}=\frac{0}{3}=0$
$\therefore $ $\tan \alpha+\tan \beta+\tan \gamma+\tan \delta=0$
Hence, $( 4)$ is the correct answer.