If $\sin 2\theta = \cos 3\theta $ and $\theta $ is an acute angle, then $\sin \theta $ is equal to
$\frac{{\sqrt 5 - 1}}{4}$
$\frac{{ - \sqrt 5 - 1}}{4}$
$0$
None of these
General value of $\theta $ satisfying the equation ${\tan ^2}\theta + \sec 2\theta - = 1$ is
If $\sin 2\theta = \cos \theta ,\,\,0 < \theta < \pi $, then the possible values of $\theta $ are
The number of solutions of the given equation $\tan \theta + \sec \theta = \sqrt 3 ,$ where $0 < \theta < 2\pi $ is
If $\sin \theta + \cos \theta = \sqrt 2 \cos \alpha $, then the general value of $\theta $ is
If $\operatorname{cosec}^2(\alpha+\beta)-\sin ^2(\beta-\alpha)+\sin ^2(2 \alpha-\beta)=\cos ^2(\alpha-\beta)$ where $\alpha, \beta \in\left(0, \frac{\pi}{2}\right)$, then $\sin (\alpha-\beta)$ is equal to