If $\sin \theta + \cos \theta = \sqrt 2 \cos \alpha $, then the general value of $\theta $ is
$2n\pi - \frac{\pi }{4} \pm \,\,\alpha $
$2n\pi + \frac{\pi }{4} \pm \alpha $
$n\pi - \frac{\pi }{4} \pm \alpha $
$n\pi + \frac{\pi }{4} \pm \alpha $
The number of solutions that the equation $sin5\theta cos3\theta = sin9\theta cos7\theta $ has in $\left[ {0,\frac{\pi }{4}} \right]$ is
If $2(\sin x - \cos 2x) - \sin 2x(1 + 2\sin x)2\cos x = 0$ then
If $0\, \le \,x\, < \frac{\pi }{2},$ then the number of values of $x$ for which $sin\,x -sin\,2x + sin\,3x=0,$ is
Find the principal solutions of the equation $\tan x=-\frac{1}{\sqrt{3}}.$
If $\sin 3\alpha = 4\sin \alpha \sin (x + \alpha )\sin (x - \alpha ),$ then $x = $