यदि $\left|\begin{array}{ccc}a^{2} & b^{2} & c^{2} \\ (a+\lambda)^{2} & (b+\lambda)^{2} & (c+\lambda)^{2} \\ (a-\lambda)^{2} & (b-\lambda)^{2} & (c-\lambda)^{2}\end{array}\right|=k \lambda\left|\begin{array}{ccc}a^{2} & b^{2} & c^{2} \\ a & b & c \\ 1 & 1 & 1\end{array}\right|, \lambda \neq 0$ है, तो $k$ बराबर है

  • [JEE MAIN 2014]
  • A

    $4\lambda \,abc$

  • B

    $-4\lambda \,abc$

  • C

    $4\lambda ^2$

  • D

    $-4\lambda ^2$

Similar Questions

माना संख्याएं $2, b , c$ एक समान्तर श्रेढ़ी में है तथा $A =\left[\begin{array}{ccc}1 & 1 & 1 \\ 2 & b & c \\ 4 & b ^{2} & c ^{2}\end{array}\right]$. यदि $\operatorname{det}( A ) \in[2,16]$, तो $c$ निम्न में से किस अन्तराल में है 

  • [JEE MAIN 2019]

$\left| {\,\begin{array}{*{20}{c}}{{b^2} - ab}&{b - c}&{bc - ac}\\{ab - {a^2}}&{a - b}&{{b^2} - ab}\\{bc - ac}&{c - a}&{ab - {a^2}}\end{array}\,} \right| = $

सारणिकों के गुणधर्मों का प्रयोग करके सिद्ध कीजिए :

$\left|\begin{array}{ccc}x+4 & 2 x & 2 x \\ 2 x & x+4 & 2 x \\ 2 x & 2 x & x+4\end{array}\right|=(5 x+4)(4-x)^{2}$

यदि $\Delta=\left|\begin{array}{ccc}2 & -3 & 5 \\ 6 & 0 & 4 \\ 1 & 5 & -7\end{array}\right|$ है तो गुणधर्म $2$ का सत्यापन कीजिए।

यदि $a + x = b + y = c + z +1$ है, जहाँ $a , b , c , x$, $y , z$ शून्येत्तर भिन्न वास्तविक संख्याएँ हैं , तो $\left|\begin{array}{lll} x & a + y & x + a \\ y & b + y & y + b \\ z & c + y & z + c \end{array}\right|$ बराबर है 

  • [JEE MAIN 2020]