3 and 4 .Determinants and Matrices
easy

सारणिक $\left| {\,\begin{array}{*{20}{c}}{265}&{240}&{219}\\{240}&{225}&{198}\\{219}&{198}&{181}\end{array}\,} \right|$ का मान है

A

$0$

B

$679$

C

$779$

D

$1000$

Solution

(a) $\left| {{\mkern 1mu} \begin{array}{*{20}{c}}
{265}&{240}&{219}\\
{240}&{225}&{198}\\
{219}&{198}&{181}
\end{array}{\mkern 1mu} } \right|$ $ = \left| {{\mkern 1mu} \begin{array}{*{20}{c}}
{25}&{21}&{219}\\
{15}&{27}&{198}\\
{21}&{17}&{181}
\end{array}{\mkern 1mu} } \right|$
{ ${C_1} \to {C_1} – {C_2};\,{C_2} \to {C_2} – {C_3} $} से

=$\left| {\,\begin{array}{*{20}{c}}4&{21}&9\\{ – 12}&{27}&{ – 72}\\4&{17}&{11}\end{array}\,} \right|$
{ ${C_1} \to {C_1} – {C_2};\,{C_3} \to {C_3} – 10{C_2} $} से

= $\,\left| {\,\begin{array}{*{20}{c}}4&{21}&9\\{ – 12}&{27}&{ – 72}\\0&{ – 4}&2\end{array}\,} \right|$ { ${R_3} \to {R_3} – {R_1}$}

=$4\,\left| {\,\begin{array}{*{20}{c}}1&{21}&9\\{ – 3}&{27}&{ – 72}\\0&{ – 4}&2\end{array}\,} \right| = 4\,\left| {\,\begin{array}{*{20}{c}}1&{21}&9\\0&{90}&{ – 45}\\0&{ – 4}&2\end{array}\,} \right|$         

(${R_2} \to 3{R_1} + {R_2}$ के द्वारा) $=4(90 × 2-45 × 4) = 0 $

Standard 12
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.