જો ${\left( {2 + \frac{x}{3}} \right)^{55}}$ ના વિસ્તરણમાં $x$ ની ઘાતક અનુક્રમે વધે છે અને બે ક્રમિક પદમાં આવેલ $x$ની ઘાતાંકના સહગુણક સરખા હોય તો તે પદો મેળવો.
$8^{th}$ અને $9^{th}$
$7^{th}$ અને $8^{th}$
$28^{th}$ અને $29^{th}$
$27^{th}$ અને $28^{th}$
${\left[ {\frac{x}{2}\,\, - \,\,\frac{3}{{{x^2}}}} \right]^{10}}$ માં $x^4$ નો સહગુણક મેળવો
$\left(x^{2 / 3}+\frac{1}{2} x^{-2 / 5}\right)^9$ ના દ્વિપદી વિસ્તરણમાં $x^{2 / 3}$ અને $x^{-2 / 5}$ ના સહગુણકો નો સરવાળો ............ છે.
$\left( {{7^{1/5}} - {3^{1/10}}} \right)^{60}$ ના વિસ્તરણમાં કુલ અસંમેય પદોની સંખ્યા મેળવો.
${(1 + x)^{20}}$ ના વિસ્તરણમાં ${r^{th}}$ અને ${(r + 4)^{th}}$ પદોના સહગુણક સમાન હોય તો . . . .
${\left( {3x - \frac{1}{{{x^2}}}} \right)^{10}}$ then $5^{th}$ ના વિસ્તરણમાં છેલ્લેથી પાંચમું પદ મેળવો