If ${\Delta _r} = \left| {\begin{array}{*{20}{c}}
  r&{2r - 1}&{3r - 2} \\ 
  {\frac{n}{2}}&{n - 1}&a \\ 
  {\frac{1}{2}n\left( {n - 1} \right)}&{{{\left( {n - 1} \right)}^2}}&{\frac{1}{2}\left( {n - 1} \right)\left( {3n - 4} \right)} 
\end{array}} \right|$ then the value of $\sum\limits_{r = 1}^{n - 1} {{\Delta _r}} $

  • [JEE MAIN 2014]
  • A

    depends only on $a$

  • B

    depends only on $n$

  • C

    depends both on $a$ and $n$

  • D

    is independent of both $a$ and $n$

Similar Questions

If $\omega $ is an imaginary root of unity, then the value of $\left| {\,\begin{array}{*{20}{c}}a&{b{\omega ^2}}&{a\omega }\\{b\omega }&c&{b{\omega ^2}}\\{c{\omega ^2}}&{a\omega }&c\end{array}\,} \right|$ is

If $A$, $B$ and $C$ are square matrices of order $3$ such that $A = \left[ {\begin{array}{*{20}{c}}   x&0&1 \\    0&y&0 \\    0&0&z  \end{array}} \right]$ and $\left| B \right| = 36$, $\left| C \right| = 4$,  $\left( {x,y,z \in N} \right)$ and $\left| {ABC} \right| = 1152$ then the minimum value of $x + y + z$ is

$\left| {\,\begin{array}{*{20}{c}}{1/a}&{{a^2}}&{bc}\\{1/b}&{{b^2}}&{ca}\\{1/c}&{{c^2}}&{ab}\end{array}\,} \right| = $

If the system of equations

$x-2 y+3 z=9$

$2 x+y+z=b$

$x-7 y+a z=24$

has infinitely many solutions, then $a - b$ is equal to

  • [JEE MAIN 2020]

Find the area of the triangle whose vertices are $(3,8),(-4,2)$ and $(5,1)$